Lý thuyết một số phương trình lượng giác thường gặp

  •   

I. PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC

1. Định nghĩa

Phương trình bậc nhất đối với một hàm số lượng giác là phương trình có dạng:

at+b=0(1)

Trong đó, a,b là các hằng số (a0)t là một trong các hàm số lượng giác.

2. Cách giải

Chia cả hai vế cho a ta được được (1) về phương trình lượng giác cơ bản.

Ví dụ:

2cosx3=02cosx=3cosx=32=cosπ6x=±π6+k2π

3. Phương trình đưa về phương trình bậc nhất đối với một hàm số lượng giác

Ví dụ:

5sinxsin2x=05sinx2sinxcosx=0sinx(52cosx)=0[sinx=052cosx=0[sinx=0cosx=52(VNvi52>1)x=kπ,kZ

II. PHƯƠNG TRÌNH BẬC HAI ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC

1. Định nghĩa

Phương trình bậc hai đối với một hàm số lượng giác là phương trình có dạng

at2+bt+c=0(a0)

Trong đó a,b,c là các hằng số và t là một trong số các hàm số lượng giác.

2. Cách giải

- Đặt ẩn phụ và điều kiện cho ẩn (nếu có).

- Giải phương trình với ẩn phụ.

- Từ đó giải phương trình lượng giác cơ bản.

Ví dụ:

tan2xtanx2=0(1)

Đặt t=tanx thì (1) là:

t2t2=0[t=1t=2

[tanx=1tanx=2[x=π4+kπx=arctan2+kπ,kZ

III. PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI sinxcosx

Xét phương trình asinx+bcosx=c

+) Chia hai vế phương trình cho a2+b2

+) Gọi α là góc lượng giác tạo bởi chiều dương của trục hoành với vecto \overrightarrow {OM} = (a;b) thì phương trình trở thành một phương trình đã biết cách giải:

\sin (x + \alpha ) = {c \over {\sqrt {{a^2} + {b^2}} }}

Chú ý : Để phương trình \sin (x + a) = {{{c^2}} \over {\sqrt {{a^2} + {b^2}} }} có nghiệm, điều kiện cần và đủ là

\left| {{{{c^2}} \over {\sqrt {{a^2} + {b^2}} }}} \right| \le 1

\Leftrightarrow \left| c \right| \le \sqrt {{a^2} + {b^2}}

\Leftrightarrow {c^2} \le {a^2} + {b^2}

Đó cũng là điều kiện cần và đủ để phương trình a\sin x + b\cos x = c có nghiệm.