Bài 2 trang 97 SGK Đại số và Giải tích 11

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm số hạng đầu và công sai của các cấp số cộng sau, biết:

LG a

\(\,\,\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 10\\
{u_1} + {u_6} = 17
\end{array} \right.\)

Phương pháp giải:

Sử dụng công thức SHTQ: \(u_n= u_1+ (n – 1)d\).

Lời giải chi tiết:

Ta có :

\(\begin{array}{*{20}{l}}
{{u_3}\; = {\rm{ }}{u_{1\;}} + {\rm{ }}2d{\rm{ }};}\\
{{u_5}\; = {\rm{ }}{u_1}\; + {\rm{ }}4d{\rm{ }};}\\
{{u_6}\; = {\rm{ }}{u_1}\; + {\rm{ }}5d}
\end{array}\)

Theo đề bài ta có :

\(\begin{array}{l}\,\,\left\{ \begin{array}{l}
{u_1} - {u_3} + {u_5} = 10\\
{u_1} + {u_6} = 17
\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}
{u_1} - \left( {{u_1} + 2d} \right) + {u_1} + 4d = 10\\
{u_1} + {u_1} + 5d = 17
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{u_1} + 2d = 10\\
2{u_1} + 5d = 17
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{u_1} = 16\\
d = - 3
\end{array} \right.\\\end{array}\)

LG b

\(\,\,\left\{ \begin{array}{l}
{u_7} - {u_3} = 8\\
{u_2}.{u_7} = 75
\end{array} \right.\)

Phương pháp giải:

Sử dụng công thức SHTQ: \(u_n= u_1+ (n – 1)d\).

Lời giải chi tiết:

Ta có: \({u_7}\; = {\rm{ }}{u_1}\; + {\rm{ }}6d{\rm{ }};{\rm{ }}{u_{3\;}} = {\rm{ }}{u_1}\; + {\rm{ }}2d{\rm{ }};{\rm{ }}{u_2}\; = {\rm{ }}{u_{1\;}} + {\rm{ }}d\)

Do đó theo đề bài ta có:

\(\begin{array}{l}\,\left\{ \begin{array}{l}
{u_7} - {u_3} = 8\\
{u_2}.{u_7} = 75
\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}
{u_1} + 6d - {u_1} - 2d = 8\\
\left( {{u_1} + d} \right)\left( {{u_1} + 6d} \right) = 75
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
4d = 8\\
\left( {{u_1} + d} \right)\left( {{u_1} + 6d} \right) = 75
\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}
d = 2\\
\left( {{u_1} + 2} \right)\left( {{u_1} + 12} \right) = 75
\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}d = 2\\u_1^2 + 14{u_1} + 24 = 75\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}d = 2\\u_1^2 + 14{u_1} - 51 = 0\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}d = 2\\\left[ \begin{array}{l}{u_1} = 3\\{u_1} = - 17\end{array} \right.\end{array} \right.\end{array}\)

\( \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
d = 2\\
{u_1} = 3
\end{array} \right.\\
\left\{ \begin{array}{l}
d = 2\\
{u_1} = - 17
\end{array} \right.
\end{array} \right.\)