Đề bài
Giải phương trình \(\sqrt {3} sin3x – cos3x = \sqrt{2}\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Chia cả hai vế cho \(2\) và sử dụng công thức \(\sin \left( {a - b} \right) = \sin a\cos b - \sin b\cos a\) biến đổi phương trình.
Lời giải chi tiết
\(\eqalign{
& \sqrt 3 \sin 3x - \cos 3x = \sqrt 2 \cr
& \Leftrightarrow {{\sqrt 3 } \over 2}\sin 3x - {1 \over 2}\cos 3x = {{\sqrt 2 } \over 2} \cr
& \Leftrightarrow \cos {\pi \over 6}\sin 3x - \sin {\pi \over 6}\cos 3x = \sin {\pi \over 4} \cr
& \Leftrightarrow \sin (3x - {\pi \over 6}) = \sin {\pi \over 4} \cr
& \Leftrightarrow \left[ \matrix{
3x - {\pi \over 6} = {\pi \over 4} + k2\pi \hfill \cr
3x - {\pi \over 6} = \pi - {\pi \over 4} + k2\pi \hfill \cr} \right.;\,k \in Z \cr
& \Leftrightarrow \left[ \matrix{
3x = {5\pi \over 12} + k2\pi \hfill \cr
3x = {11\pi \over 12} + k2\pi \hfill \cr} \right.;k \in Z \cr
& \Leftrightarrow \left[ \matrix{
x = {5\pi \over 36} + k{{2\pi } \over 3} \hfill \cr
x = {11\pi \over 36} + k{{2\pi } \over 3} \hfill \cr} \right.;\,\,k \in Z \cr} \)