Giải bài 4 trang 17 SGK Đại số và Giải tích 11

  •   

Đề bài

Chứng minh rằng sin2(x+kπ)=sin2x với mọi số nguyên k. Từ đó vẽ đồ thị hàm số y=sin2x.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Dựa vào tính tuần hoàn và chu kì của hàm số y=sinx: Hàm y=sinx là hàm tuần hoàn với chu kì 2π.

Lời giải chi tiết

Hàm y=sinx là hàm tuần hoàn với chu kì 2π nên ta có:

sin2(x+kπ)=sin(2x+k2π)=sin2xkZ

Ta có:

f(x)=sin2xf(x+π)=sin2(x+π)=sin(2x+k2π)=sin2x=f(x)

Hàm số y=sin2x tuần là hàm tuần hoàn với chu kì π.

Xét hàm số y=sin2x trên đoạn [0;π].

Ta lấy các điểm đặc biệt như sau:

Từ đó ta có đồ thị hàm số y=sin2x trên đoạn [0;π] là:

Do hàm số y=sin2x tuần hoàn với chu kì π nên ta có đồ thị là: