Đề bài
Trong không gian, hai đường thẳng không cắt nhau có thể vuông góc với nhau không? Giả sử hai đường thẳng \(a\) và \(b\) lần lượt có vecto chỉ phương là \(\overrightarrow u \) và \(\overrightarrow v \) . Khi nào ta có thể kết luận \(a\) và \(b\) vuông góc với nhau?
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng vị trí tương đối của hai đường thẳng trong không gian để nhận xét.
Lời giải chi tiết
Trong không gian, hai đường thẳng không cắt nhau vẫn có thể vuông góc với nhau.
Đường thẳng \(a\) có vecto chỉ phương \(\overrightarrow u \)
Đường thẳng \(b\) có vecto chỉ phương là \(\overrightarrow v \)
\(a\) vuông góc với \(b\) khi và chỉ khi tích vô hướng của hai vecto \(\overrightarrow u \) và \(\overrightarrow v \) bằng không.
\(a \, \bot \, b \Leftrightarrow \overrightarrow u .\overrightarrow v = 0\)