Câu hỏi 6 trang 153 SGK Đại số và Giải tích 11

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Bằng định nghĩa, hãy tính đạo hàm của các hàm số:

LG a

\(f\left( x \right) = {x^2}\) tại điểm \(x\) bất kì;

Phương pháp giải:

- Tính \( \Delta y \) theo \( \Delta x \).

- Tính tỉ số \({{\Delta y} \over {\Delta x}}\).

- Tính giới hạn \(\mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} \) và kết luận.

Lời giải chi tiết:

Giả sử \(Δx\) là số gia của đối số tại \(x_0\) bất kỳ. Ta có:

\(\eqalign{
& \Delta y = f({x_0} + \Delta x) - f({x_0}) \cr
& = {({x_0} + \Delta x)^2} - {x_0}^2 = 2{x_0}\Delta x + {(\Delta x)^2} \cr
& \Rightarrow {{\Delta y} \over {\Delta x}} = {{2{x_0}\Delta x + {{(\Delta x)}^2}} \over {\Delta x}} = 2{x_0} + \Delta x \cr
& \Rightarrow y'({x_0}) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} (2{x_0} + \Delta x) = 2{x_0} \cr} \)

LG b

\(g(x) = {1 \over x}\) tại điểm bất kì \(x ≠ 0.\)

Lời giải chi tiết:

Giả sử \(Δx\) là số gia của đối số tại \(x_0\) bất kỳ. Ta có:

\(\eqalign{
& \Delta y = g({x_0} + \Delta x) - g({x_0}) \cr
& = {1 \over {{x_0} + \Delta x}} - {1 \over {{x_0}}} = {{ - \Delta x} \over {{x_0}({x_0} + \Delta x)}} \cr
& \Rightarrow {{\Delta y} \over {\Delta x}} = {{ - \Delta x} \over {{x_0}({x_0} + \Delta x)}}:\Delta x = {{ - 1} \over {{x_0}({x_0} + \Delta x)}} \cr
& y'({x_0}) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} ({{ - 1} \over {{x_0}({x_0} + \Delta x)}}) = {{ - 1} \over {{x_0}^2}} \cr} \)