Đề bài
Chọn hệ tọa độ \(Oxy\) sao cho trục \(Ox\) trùng với trục đối xứng, rồi dùng biểu thức tọa độ của phép đối xứng qua trục \(Ox\) để chứng minh tính chất 1.
Video hướng dẫn giải
Lời giải chi tiết
Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\)
Xét phép đối xứng qua trục \(Ox\) thì \(A, B\) biến thành \(A'\left( {{x_A}; - {y_A}} \right),B'\left( {{x_B}; - {y_B}} \right)\)
Khi đó:
\(\begin{array}{l}
AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \\
A'B' = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( { - {y_B} + {y_A}} \right)}^2}} \\
= \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \\
= AB\\
\Rightarrow A'B' = AB \Rightarrow dpcm
\end{array}\)
Chú ý:
Trực quan các em có thể lấy hai điểm \(A, B\) cụ thể như sau:
Lấy ảnh \(A',B'\) của hai điểm \(A(1; 2)\) và \(B(2; 3)\) qua phép đối xứng trục \(Ox\)
Dùng biểu thức tọa độ của phép đối xứng qua trục \(Ox\), ta có:
\(A'(1;-2), B'(2;-3)\)
\(\eqalign{
& AB = \sqrt {{{(2 - 1)}^2} + {{(3 - 2)}^2}} \cr &= \sqrt {{1^2} + {1^2}} = \sqrt 2 \cr
& A'B' = \sqrt {{{(2 - 1)}^2} + {{( - 3 - ( - 2))}^2}} \cr &= \sqrt {{1^2} + {{( - 1)}^2}} = \sqrt 2 \cr} \)
\(⇒ A'B' = AB\)