Trả lời câu hỏi 5 trang 35 SGK Đại số và Giải tích 11

  •   

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Dựa vào các công thức cộng đã học

sin(a+b)=sinacosb+sinbcosa;sin(ab)=sinacosbsinbcosa;cos(a+b)=cosacosbsinasinb;cos(ab)=cosacosb+sinasinb

và kết quả cosπ4=sinπ4=22, hãy chứng minh rằng:

LG a

sinx+cosx=2cos(xπ4);

Lời giải chi tiết:

sinx+cosx=2.(22sinx+22cosx)

=2.(sinπ4sinx+cosπ4cosx)

=2.cos(xπ4)

Cách khác:

2cos(xπ4)=2.(cosx.cosπ4+sinx.sinπ4)

=2.(22.cosx+22.sinx)=2.22.cosx+2.22.sinx=cosx+sinx(đpcm)

LG b

sinxcosx=2sin(xπ4).

Lời giải chi tiết:

sinxcosx=2.(22sinx22cosx)

=2.(cosπ4sinxsinπ4cosx)

=2.sin(xπ4)

Cách khác:

2.sin(xπ4)=2.(sinx.cosπ4sinπ4.cosx)=2.(22.sinx22.cosx)=2.22.sinx2.22.cosx=sinxcosx (đpcm).