Video hướng dẫn giải
Giải phương trình \(f'(x) = 0\), biết rằng:
LG a
\(f(x) = 3\cos x + 4\sin x + 5x\)
Phương pháp giải:
Sử dụng bảng đạo hàm cơ bản và các quy tắc tính đạo hàm, tính đạo hàm của hàm số, sau đó giải phương trình lượng giác.
Phương pháp giải phương trình dạng \(a\sin x + b\cos x = c\): Chia cả 2 vế cho \(\sqrt {{a^2} + {b^2}} \).
Lời giải chi tiết:
\(f'(x) = - 3\sin x + 4\cos x + 5\). Do đó
\(f'(x) = 0 \Leftrightarrow - 3\sin x + 4\cos x + 5 = 0\)
\(\Leftrightarrow3 \sin x - 4\cos x = 5\)
\(\Leftrightarrow \dfrac{3}{5}\sin x - \dfrac{4}{5}\ cos x = 1\). (1)
Đặt \(\cos φ = \dfrac{3}{5}\), \(\left(φ ∈ \left ( 0;\dfrac{\pi }{2} \right )\right ) \Rightarrow \sin φ = \dfrac{4}{5}\), ta có:
(1) \(\Leftrightarrow \sin x.\cos φ - \cos x.\sin φ = 1 \Leftrightarrow \sin(x - φ) = 1\)
\(\Leftrightarrow x - φ = \dfrac{\pi }{2} + k2π \Leftrightarrow x = φ + \dfrac{\pi }{2} + k2π, k ∈ \mathbb Z\)
LG b
\(f(x) = 1 - \sin(π + x) + 2\cos \left ( \dfrac{2\pi +x}{2} \right )\)
Phương pháp giải:
Sử dụng mối liên hệ của các góc phụ nhau, bù nhau, hơn kém nhau \(\pi\), hơn kém nhau \(\dfrac{\pi }{2}\) và giải phương trình lượng giác cơ bản
Lời giải chi tiết:
\(\begin{array}{l}
f'\left( x \right) = \left( 1 \right)' - \left[ {\sin \left( {\pi + x} \right)} \right]' + 2\left[ {\cos \left( {\pi + \dfrac{x}{2}} \right)} \right]'\\
= - \left( {\pi + x} \right)'\cos \left( {\pi + x} \right) + 2\left( {\pi + \dfrac{x}{2}} \right)'.\left[ { - \sin \left( {\pi + \dfrac{x}{2}} \right)} \right]\\
= - \cos \left( {\pi + x} \right) + 2.\dfrac{1}{2}.\left[ { - \sin \left( {\pi + \dfrac{x}{2}} \right)} \right]
\end{array}\)
\(f'(x) = - \cos(π + x) - \sin \left (\pi + \dfrac{x}{2} \right ) = \cos x + \sin \dfrac{x }{2}\)
\(f'(x) = 0 \Leftrightarrow \cos x + \sin \dfrac{x }{2} = 0 \Leftrightarrow \sin \dfrac{x }{2} = - cosx\)
\(\Leftrightarrow sin \dfrac{x }{2} = sin \left (x-\dfrac{\pi}{2}\right )\)
\(\begin{array}{l}
\Leftrightarrow \left[ \begin{array}{l}
\dfrac{x}{2} = x - \dfrac{\pi }{2} + k2\pi \\
\dfrac{x}{2} = \pi - x + \dfrac{\pi }{2} + k2\pi
\end{array} \right.
\end{array}\)
\( \Leftrightarrow \left[ \begin{array}{l}
- \frac{x}{2} = - \frac{\pi }{2} + k2\pi \\
\frac{{3x}}{2} = \frac{{3\pi }}{2} + k2\pi
\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}
x = \pi - k4\pi \\
x = \pi + \frac{{k4\pi }}{3}
\end{array} \right. \)
\(\Leftrightarrow x = \pi + \frac{{k4\pi }}{3}\)
Cách khác:
\(\begin{array}{l}
f\left( x \right) = 1 - \sin \left( {\pi + x} \right) + 2\cos \left( {\frac{{2\pi + x}}{2}} \right)\\
= 1 + \sin x + 2\cos \left( {\pi + \frac{x}{2}} \right)\\
= 1 + \sin x - 2\cos \frac{x}{2}\\
f'\left( x \right) = \left( {1 + \sin x - 2\cos \frac{x}{2}} \right)'\\
= \left( 1 \right)' + \left( {\sin x} \right)' - 2\left( {\cos \frac{x}{2}} \right)'\\
= 0 + \cos x - 2.\frac{1}{2}\left( { - \sin \frac{x}{2}} \right)\\
= \cos x + \sin \frac{x}{2}\\
f'\left( x \right) = 0 \Leftrightarrow \cos x + \sin \frac{x}{2} = 0\\
\Leftrightarrow \cos x = - \sin \frac{x}{2} = - \cos \left( {\frac{\pi }{2} - \frac{x}{2}} \right)\\
\Leftrightarrow \cos x = \cos \left( {\pi - \left( {\frac{\pi }{2} - \frac{x}{2}} \right)} \right)\\
\Leftrightarrow \cos x = \cos \left( {\frac{\pi }{2} + \frac{x}{2}} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
x = \frac{\pi }{2} + \frac{x}{2} + k2\pi \\
x = - \frac{\pi }{2} - \frac{x}{2} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\frac{x}{2} = \frac{\pi }{2} + k2\pi \\
\frac{{3x}}{2} = - \frac{\pi }{2} + k2\pi
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \pi + k4\pi \\
x = - \frac{\pi }{3} + \frac{{k4\pi }}{3}
\end{array} \right.
\end{array}\)
Chú ý:
Ở họ nghiệm thứ 2 nếu cho \(k=1+l,l\in Z\) thì:
\(x = - \frac{\pi }{3} + \frac{{k4\pi }}{3} = - \frac{\pi }{3} + \frac{{\left( {1 + l} \right)4\pi }}{3} \)
\(= - \frac{\pi }{3} + \frac{{4\pi + l4\pi }}{3} = - \frac{\pi }{3} + \frac{{4\pi }}{3} + \frac{{l4\pi }}{3} \)
\(= \pi + \frac{{l4\pi }}{3}\)
Do đó hai họ nghiệm \(x = \pi + k4\pi\) và \(x= \pi + \frac{{l4\pi }}{3}\) hợp lại vẫn được họ nghiệm \(x=\pi + \frac{{l4\pi }}{3}\) trùng với kết quả cách 1.