Trả lời câu hỏi 6 trang 77 SGK Hình học 11

Đề bài

Phát biểu định lí Ta – lét trong không gian.

Lời giải chi tiết

Định lí Ta – lét trong không gian:

- Định lí thuận (Định lí Ta – lét)

Ba mặt phẳng đôi một song song chắn trên hai cát tuyến bất kì các đoạn thẳng tương ứng tỉ lệ, nghĩa là:

\(\begin{array}{l}
\left\{ \begin{array}{l}
\left( P \right)//\left( Q \right)//\left( R \right)\\
a \cap \left( P \right) = A,a \cap \left( Q \right) = B,a \cap \left( R \right) = C\\
a' \cap \left( P \right) = A',a' \cap \left( Q \right) = B',a' \cap \left( R \right) = C'
\end{array} \right.\\
\Rightarrow \dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{CA}}{{C'A'}}
\end{array}\)

- Định lí đảo (Định lí Ta – lét đảo)

Giả sử trên hai đường thẳng \(a\) và \(a'\) lần lượt lấy hai bộ ba điểm \((A, B, C)\) và \((A', B', C')\) sao cho \( \dfrac{{AB}}{{A'B'}} = \dfrac{{BC}}{{B'C'}} = \dfrac{{CA}}{{C'A'}}\).

Khi đó ba đường thẳng \(AA', BB', CC'\) cùng song song với một mặt phẳng, nghĩa là ba đường thẳng đó nằm trên ba mặt phẳng song song với nhau.