Bài 10 trang 114 SGK Hình học 11

Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có các cạnh bên và cạnh đáy đều bằng \(a\). Gọi \(O\) là tâm của hình vuông \( ABCD\).

a) Tính độ dài đoạn thẳng \(SO\).

b) Gọi \(M\) là trung điểm của đoạn \(SC\). Chứng minh hai mặt phẳng \((MBD)\) và \((SAC)\) vuông góc với nhau.

c) Tính độ dài đoạn \(OM\) và tính góc giữa hai mặt phẳng \((MBD)\) và \((ABCD)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Áp dụng định lý Pi-ta-go cho tam giác vuông.

b) Chứng minh \(BD \, \bot \, (SAC)\) và sử dụng lý thuyết: Nếu một đường thẳng vuông góc với một phẳng thì mọi mặt phẳng chứa đường thẳng này đều vuông góc mặt phẳng kia.

c) Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến.

Lời giải chi tiết

a) Hình chóp tứ giác đều nên \(SO \, \bot \, (ABCD)\). Do đó \(SO \, \bot \, AC\)

Tam giác ABD vuông tại A nên \(BD = \sqrt {A{B^2} + A{D^2}} = a\sqrt 2 \) \(\Rightarrow AO = \dfrac{1}{2}BD = \dfrac{{a\sqrt 2 }}{2}\)

Xét tam giác \(SOA\) vuông tại \(O\):

\(SO = \sqrt{SA^{2}-AO^{2}}=\dfrac{a\sqrt{2}}{2}.\)

b) \(BD \, \bot \, AC\) , \(BD \, \bot \, SO\) nên \(BD \, \bot \, (SAC)\),

Mà \(BD ⊂ (MBD)\) do đó \((MBD) ⊥ (SAC)\).

c) \(OM =\dfrac{SC}{2}=\dfrac{a}{2}\) (trung tuyến ứng với cạnh huyền của tam giác vuông thì bằng nửa cạnh ấy).

\( \Delta SDC = \Delta SBC(c.c.c)\) suy ra \(DM=BM\) suy ra tam giác \(BDM\) cân tại \(M\)

\(OM\) vừa là trung tuyến đồng thời là đường cao nên \(OM \, \bot \, BD\)

\(\left. \matrix{
(MBD) \cap (ABCD) = BD \hfill \cr
OM \, \bot \, BD \hfill \cr
OC \, \bot \, BD \hfill \cr} \right\}\)

\( \Rightarrow \) góc giữa hai mặt phẳng \((MBD)\) và \((ABCD)\) là \(\widehat {MOC}\)

Ta có \(OM=\dfrac{SC}{2}=\dfrac{a}{2}\) hay \(OM=MC\)

Tam giác \(OMC\) vuông cân tại \(M\) nên \(\widehat{MOC}=45^{0}.\)

Vậy góc giữa hai mặt phẳng \((MBD)\) và \((ABCD)\) là \(45^0\).