Câu hỏi 3 trang 109 SGK Hình học 11

Đề bài

Cho hình vuông \(ABCD\). Dựng đoạn \(AS\) vuông góc với mặt phẳng chứa hình vuông \(ABCD.\)

a) Hãy nêu tên các mặt phẳng lần lượt chứa các đường thẳng \(SB, SC, SD\) và vuông góc với mặt phẳng \((ABCD)\)

b) Chứng minh rằng mặt phẳng \((SAC)\) vuông góc với mặt phẳng \((SBD)\)

Video hướng dẫn giải

Lời giải chi tiết

a)

\(\begin{array}{l}
SA \bot (ABCD),SA \subset (SAB)\\
\Rightarrow {\rm{ }}\left( {SAB} \right) \bot \left( {ABCD} \right)\\
SA \bot (ABCD),SA \subset (SAD)\\
\Rightarrow {\rm{ }}\left( {SAD} \right) \bot \left( {ABCD} \right)\\
SA \bot (ABCD),SA \subset (SAC)\\
\Rightarrow {\rm{ }}\left( {SAC} \right) \bot \left( {ABCD} \right)
\end{array}\)

b) \(ABCD\) là hình vuông nên \(BD \bot AC\)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BD\)

Ta có:

\(\left\{ \begin{array}{l}
BD \bot AC\\
BD \bot SA
\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\)

Mà \(BD \subset (SBD)\) nên \((SAC) ⊥ (SBD)\)