Bài 3 trang 178 SGK Đại số và Giải tích 11

Đề bài

Nêu cách giải các phương trình lượng giác cơ bản, cách giải phương trình dạng: \(a\sin x + b \cos x = c\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Nêu cách giải phương trình thuần nhất đối với sin và cos.

Lời giải chi tiết

_ Phương trình lượng giác dạng cơ bản:

\(\eqalign{
& \sin x = \sin \alpha \Leftrightarrow \left[ \matrix{
x = \alpha + k2\pi \hfill \cr
x = \pi - \alpha + k2\pi \hfill \cr} \right.;k \in \mathbb Z \cr
& \cos x = \cos \alpha \Leftrightarrow x = \pm \alpha ,k \in \mathbb Z \cr
& \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb Z \cr
& \cot x = \tan \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb Z \cr} \)

Hoặc:

\(\eqalign{
& \sin x = a \left( {\left| a \right| \le 1} \right)\Leftrightarrow \left[ \matrix{
x = \arcsin a + k2\pi \hfill \cr
x = \pi - \arcsin a + k2\pi \hfill \cr} \right.;k \in \mathbb Z \cr
& \cos x = a \left( {\left| a \right| \le 1} \right)\Leftrightarrow x = \pm \arccos a,k \in \mathbb Z \cr
& \tan x = a \Leftrightarrow x = \arctan a + k\pi ,k \in \mathbb Z \cr
& \cot x = a \Leftrightarrow x = {\rm{ar}}c\cot a + k\pi ,k \in \mathbb Z \cr} \)

_ Phương trình dạng : \(a \sin x + b \cos x = c\) (*)

Cách giải:

+ Chia cả hai vế của phương trình (*) cho \(\sqrt {{a^2} + {b^2}} \)

\(Pt \Leftrightarrow {a \over {\sqrt {{a^2} + {b^2}} }}\sin x + {b \over {\sqrt {{a^2} + {b^2}} }}\cos x = {c \over {\sqrt {{a^2} + {b^2}} }}(**)\)

Vì \({\left( {{a \over {\sqrt {{a^2} + {b^2}} }}} \right)^2} + {\left( {{b \over {\sqrt {{a^2} + {b^2}} }}} \right)^2} = 1\) nên ta đặt:

\(\cos \alpha = {a \over {\sqrt {{a^2} + {b^2}} }};\sin \alpha = {b \over {\sqrt {{a^2} + {b^2}} }}\)

+ Khi đó phương trình (**)

\(\eqalign{
& \Leftrightarrow \sin x.cos\alpha + \cos x.\sin \alpha = {c \over {\sqrt {{a^2} + {b^2}} }} \cr
& \Leftrightarrow \sin (x + \alpha ) = {c \over {\sqrt {{a^2} + {b^2}} }} \cr} \)

Đây là phương trình cơ bản ta đã biết cách giải.