Giải bài 8 trang 18 SGK Đại số và Giải tích 11

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị lớn nhất của các hàm số:

LG a

\(y = 2\sqrt{\cos x} + 1\);

Phương pháp giải:

Sử dụng tập giá trị của hàm sin và cos: \( - 1 \le \sin x \le 1;\,\, - 1 \le \cos x \le 1\).

Lời giải chi tiết:

\(y = 2\sqrt {\cos x} + 1\)

Điều kiện: \(\cos x \ge 0\).

Vì \( - 1 \le \cos x \le 1\) nên kết hợp điều kiện ta có \(0 \le \cos x \le 1\)\( \Rightarrow 0 \le \sqrt {\cos x} \le 1\)

\( \Rightarrow 0 \le 2\sqrt {\cos x} \le 2\) \( \Rightarrow 0 + 1 \le 2\sqrt {\cos x} + 1 \le 2 + 1\) \( \Rightarrow 1 \le y \le 3\).

Do dó \(\max y = 3\) khi \(\cos x = 1 \Leftrightarrow x = k2\pi \).

LG b

\( y = 3 - 2\sin x\).

Phương pháp giải:

Sử dụng tập giá trị của hàm sin và cos: \( - 1 \le \sin x \le 1;\,\, - 1 \le \cos x \le 1\).

Lời giải chi tiết:

\(y = 3 - 2\sin x\)

ta có: \( - 1 \le \sin x \le 1\) \( \Rightarrow 2 \ge - 2\sin x \ge - 2\) \( \Rightarrow 3 + 2 \ge 3 - 2\sin x \ge 3 - 2\) \( \Rightarrow 5 \ge y \ge 1\).

Vậy \(\max y = 5\) khi \(\sin x = - 1 \Leftrightarrow x = - \dfrac{\pi }{2} + k2\pi \).