Giải bài 5 trang 37 SGK Đại số và Giải tích 11

  •   

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

cosx3sinx=2cosx3sinx=2;

Phương pháp giải:

Phương pháp giải phương trình bậc nhất đối với sin và cos: asinx+bcosx=c(a2+b2>0)asinx+bcosx=c(a2+b2>0)

- Chia cả hai vế cho a2+b2a2+b2, khi đó phương trình có dạng:

aa2+b2sinx+ba2+b2cosx=ca2+b2aa2+b2sinx+ba2+b2cosx=ca2+b2

- Đặt {aa2+b2=cosαba2+b2=sinα và sử dụng công thức sinxcosα+cosxsinα=sin(x+α) sau đó giải phương trình lượng giác cơ bản của sin.

Hoặc đặt {aa2+b2=sinαba2+b2=cosα và sử dụng công thức sinxsinα+cosxcosα=cos(xα) và giải phương trình lượng giác cơ bản của cos.

Lời giải chi tiết:

cosx3sinx=212cosx32sinx=22cosxcosπ3sinxsinπ3=22cos(x+π3)=cosπ4[x+π3=π4+k2πx+π3=π4+k2π[x=π12+k2πx=7π12+k2π(kZ)

Vậy nghiệm của phương trình là x=π12+k2π hoặc x=7π12+k2π(kZ).

LG b

3sin3x4cos3x=5;

Lời giải chi tiết:

3sin3x4cos3x=535sin3x45cos3x=1

Đặt {sinα=35cosα=45, phương trình trở thành

sin3xsinαcos3xcosα=1cos3xcosαsin3xsinα=1cos(3x+α)=13x+α=π+k2π3x=πα+k2πx=πα3+k2π3(kZ)

Vậy nghiệm của phương trình là x=πα3+k2π3(kZ) (Với sinα=35;cosα=45).

Chú ý:

Có thể đặt cách khác như sau:

Đặt {cosβ=35sinβ=45, phương trình trở thành:

sin3xcosβcos3xsinβ=1sin(3xβ)=13xβ=π2+k2π3x=π2+β+k2πx=π6+β3+k2π3

LG c

2sinx+2cosx2=0;

Lời giải chi tiết:

2sinx+2cosx2=02sinx+2cosx=2222sinx+222cosx=22212sinx+12cosx=12sinxsinπ4+cosxcosπ4=12cos(xπ4)=cosπ3[xπ4=π3+k2πxπ4=π3+k2π[x=7π12+k2πx=π12+k2π(kZ)

Vậy nghiệm của phương trình là x=7π12+k2π hoặc x=π12+k2π(kZ).

LG d

5cos2x+12sin2x13=0.

Lời giải chi tiết:

5cos2x+12sin2x13=0513cos2x+1213sin2x=1

Đặt {513=cosα1213=sinα , khi đó phương trình trở thành

cos2xcosα+sin2xsinα=1cos(2xα)=12xα=k2πx=α2+kπ(kZ)

Vậy nghiệm của phương trình là x=α2+kπ(kZ) với sinα=1213;cosα=513.