Đề bài
Giả sử hàm số y=f(x) liên tục trên đoạn [a;b] với f(a) và f(b) trái dấu nhau.
Hỏi đồ thị của hàm số có cắt trục hoành tại điểm thuộc khoảng (a;b) không?
⦁ Bạn Hưng trả lời rằng: “Đồ thị của hàm số y=f(x) phải cắt trục hoành Ox tại một điểm duy nhất nằm trong khoảng (a;b)”.
⦁ Bạn Lan khẳng định: “Đồ thị của hàm số y=f(x) phải cắt trục hoành Ox ít nhất tại một điểm nằm khoảng (a;b)”.
⦁ Bạn Tuấn thì cho rằng: “Đồ thị của hàm số y=f(x) có thể không cắt trục hoành trong khoảng (a;b), chẳng hạn như đường parabol ở hình (h.58).
Câu trả lời của bạn nào đúng, vì sao?
Lời giải chi tiết
- Bạn Lan nói đúng vì f(a) và f(b) trái dấu nên tồn tại ít nhất 1 giá trị x sao cho f(x)=0, do đó đồ thị hàm số y=f(x) cắt trục hoành tại ít nhất 1 điểm.
- Bạn Hưng sai vì có thể có 2 giá trị x sao cho f(x)=0
- Đường parabol trên hình 58 là đồ thị hàm số y2=x ⇒ đồ thị hàm số y=f(x) sẽ là 1 nửa nằm trên hoặc 1 nửa nằm dưới trục hoành
Khi đó f(a) và f(b) cùng dấu, mâu thuẫn với điều kiện f(a) và f(b) trái dấu
Ví dụ của Tuấn sai.