Tính diện tích hình phẳng giới hạn bởi:
LG a
Đồ thị hàm số \(y = {2 \over {{{\left( {x - 1} \right)}^2}}}\), trục hoành, đường thẳng \(x = 2\) và đường thẳng \(x = 3\)
Lời giải chi tiết:
\(S = \int\limits_2^3 {{2 \over {{{\left( {x - 1} \right)}^2}}}dx} = - {2 \over {x - 1}}|_2^3 = 1\)
LG b
Đồ thị hàm số \(y = {2 \over {{{\left( {x - 1} \right)}^2}}}\), đường thẳng \(y = 2\) và đường thẳng \(y = 8\)
Lời giải chi tiết:
Từ \(y = {2 \over {{{\left( {x - 1} \right)}^2}}}\), ta rút ra \(x = 1 + {{\sqrt 2 } \over {\sqrt y }}\) hoặc \(x = 1 - {{\sqrt 2 } \over {\sqrt y }}\)
Vậy \(S = \int\limits_2^8 {\left[ {1 + {{\sqrt 2 } \over {\sqrt y }} - \left( {1 - {{\sqrt 2 } \over {\sqrt y }}} \right)} \right]} dy = \int\limits_2^8 {{{2\sqrt 2 } \over {\sqrt y }}} dy = 8\)