Giải bài 1.32 trang 16 SBT Giải tích 12 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cũng câu hỏi như trong bài tập 1.31 đối cới các hàm số sau:

LG a

\(y = - {x^3} + 3{x^2} + 2x\)

Lời giải chi tiết:

+) Tìm I:

\(\begin{array}{l}
y' = - 3{x^2} + 6x + 2\\
y'' = - 6x + 6\\
y'' = 0 \Leftrightarrow - 6x + 6 = 0\\
\Leftrightarrow x = 1 \Rightarrow y\left( 1 \right) = 4\\
\Rightarrow I\left( {1;4} \right)
\end{array}\)

+) Công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) là

\(\left\{ \matrix{ x = X + 1 \hfill \cr y = Y + 4 \hfill \cr} \right.\)

+) Phương trình đường cong đã cho đối với hệ tọa độ IXY:

\(\begin{array}{l}
Y + 4 = - {\left( {X + 1} \right)^3} + 3{\left( {X + 1} \right)^2} + 2\left( {X + 1} \right)\\
\Leftrightarrow Y + 4 = - \left( {{X^3} + 3{X^2} + 3X + 1} \right)\\
+ 3\left( {{X^2} + 2X + 1} \right) + 2X + 2\\
\Leftrightarrow Y + 4 = - {X^3} + 5X + 4\\
\Leftrightarrow Y = - {X^3} + 5X
\end{array}\)

Đây là hàm số lẻ nên đồ thị hàm số nhận gốc I làm tâm đối xứng.

LG b

\(y = {x^3} + 6{x^2} + x - 12\)

Lời giải chi tiết:

+) Tìm I:

\(\begin{array}{l}
y' = 3{x^2} + 12x + 1\\
y'' = 6x + 12\\
y'' = 0 \Leftrightarrow 6x + 12 = 0\\
\Leftrightarrow x = - 2 \Rightarrow y\left( { - 2} \right) = 2\\
\Rightarrow I\left( { - 2;2} \right)
\end{array}\)

Công thức chuyển hệ tọa độ trong phép tịnh tiến theo vectơ \(\overrightarrow {OI} \) là

\(\left\{ \matrix{x = X - 2 \hfill \cr y = Y + 2 \hfill \cr} \right.\)

Phương trình đường cong đã cho đối với hệ tọa độ IXY:

\(\begin{array}{l}
Y + 2 = {\left( {X - 2} \right)^3} + 6{\left( {X - 2} \right)^2} + \left( {X - 2} \right) - 12\\
\Leftrightarrow Y + 2 = {X^3} - 6{X^2} + 12X - 8\\
+ 6\left( {{X^2} - 4X + 4} \right) + X - 2 - 12\\
\Leftrightarrow Y + 2 = {X^3} - 11X + 2\\
\Leftrightarrow Y = {X^3} - 11X
\end{array}\)

Đây là hàm số lẻ nên đồ thị hàm số nhận gốc I làm tâm đối xứng.