Giải bài 1.49 trang 20 SBT Giải tích 12 Nâng cao

  •   
Lựa chọn câu để xem lời giải nhanh hơn

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số

y=x3+32x2+6x3

Lời giải chi tiết:

+) TXĐ: D=R.

+) Chiều biến thiên:

limx+y=,limxy=+

y=3x2+3x+6y=03x2+3x+6=0[x=1x=2

BBT:

Hàm số nghịch biến trên (;1)(2;+).

Hàm số đồng biến trên (1;2).

Hàm số đạt cực đại tại x=2,yCD=7

Hàm số đạt cực tiểu tại x = - 1,{y_{CT}} = - \frac{{13}}{2}.

+) Đồ thị:

\begin{array}{l}y'' = - 6x + 3\\y'' = 0 \Leftrightarrow - 6x + 3 = 0\\ \Leftrightarrow x = \frac{1}{2} \Rightarrow y\left( {\frac{1}{2}} \right) = \frac{1}{4}\end{array}

Điểm uốn I\left( {\frac{1}{2};\frac{1}{4}} \right).

Đồ thị hàm số cắt trục tung tại điểm \left( {0; - 3} \right).

Điểm cực đại \left( {2;7} \right) và điểm cực tiểu \left( { - 1; - \frac{{13}}{2}} \right).

LG b

Chứng minh rằng phương trình

- {x^3} + {3 \over 2}{x^2} + 6x - 3 = 0

Có ba nghiệm phân biệt, trong đó có một nghiệm dương nhỏ hơn {1 \over 2}.

Lời giải chi tiết:

Quan sát đồ thị của hàm số, dễ dàng thấy rằng phương trình đã cho có ba nghiệm {x_1},{x_2},{x_3} , trong đó {x_1} < - 1,{x_2} \in \left( { - 1;2} \right){x_3} > 2 .

Hơn nữa, vì f(0) = - 3 < 0f\left( {{1 \over 2}} \right) = {1 \over 4} > 0 nên {x_2} \in \left( {0;{1 \over 2}} \right)