Đề bài
Với các giá trị nào của a, hàm số
\(f(x) =- {1 \over 3}{x^3} + 2{x^2} + (2a + 1)x - 3a + 2\)
nghịch biến trên \(\mathbb R\) ?
Lời giải chi tiết
Ta có: \(f'(x) = - {x^2} + 4x + 2a + 1\)
\(\Delta ' = 2a - 5;\Delta ' = 0 \Leftrightarrow a = - {5 \over 2}\)
+) Nếu \(a =- {5 \over 2}\) thì \(f'(x) = - {(x - 2)^2} \le 0\) với mọi \(x\in \mathbb R\), \(f'(x)=0\) chỉ tại điểm x = 2. Do đó hàm số nghịch biến trên \(\mathbb R\)
+) Nếu \(\Delta ' < 0\) thì phương trình \(f'(x) = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\) (giả sử \({x_1} < {x_2}\)). Dễ thấy hàm số f đồng biến trên khoảng \(\left( {{x_1},{x_2}} \right)\). Điều kiện đòi hỏi không được thỏa mãn.
+) Nếu \(\Delta ' < 0\), tức là \(a < - {5 \over 2}\) thì \(f(x) < 0\) với mọi \(x\in \mathbb R\). Do đó hàm số nghịch biến trên \(\mathbb R\)
Vậy hàm số nghịch biến trên \(\mathbb R\) khi và chỉ khi \(a \le - {5 \over 2}\)