Câu 64 trang 126 Sách bài tập Hình học 11 Nâng cao

  •   

Đề bài

Trong mặt phẳng (P) cho đường tròn (C) đường kính AB = 2R; C là điểm bất kì thuộc đường tròn (C không trùng với A, B). S là điểm trong không gian sao cho SA vuông góc với (P) và SA = h (h cho trước và h < 2R). Gọi I và J lần lượt là trung điểm của AC và SB. Hãy xác định vị trí điểm C trên đường tròn để IJ là đường vuông góc chung của AC và SB. Khi đó, tính khoảng cách từ điểm A đến mp(SBC).

Lời giải chi tiết

Cách 1:

Dễ thấy ACB là tam giác vuông tại C mà SA(ABC) nên ^SCB=900. Tam giác SAB vuông tại A, tam giác SCB vuông tại C mà J là trung điểm của SB, từ đó AJ = CJ. Mặt khác IA = IC. Vậy IJAC. Từ đó, IJ là đường vuông góc chung của AC và SB khi và chỉ khi IS = IB. Xét các tam giác vuông SAI và BCI ta thấy IS = IB khi và chỉ khi SA = BC.

Vậy điểm C thuộc đường tròn đã cho sao cho BC = h thì IJ là đường vuông góc chung của AC và SB. Chú ý rằng có hai điểm C như vậy.

Cách 2:

Xét tứ diện SABC với I, J là trung điểm của AC, SB ta có IJ là đường vuông góc chung của AC và SB khi và chỉ khi SA = CB và SC = AB.

Xét các tam giác vuông SAC và ACB ta có các đẳng thức trên xảy ra khi và chỉ khi SA = BC.

Dễ thấy d(A;mp(SCB))=AC1, trong đó AC1 là đường cao của tam giác vuông SAC.

Ta có AC1=SA.ACSC

AC=4R2h2,SC=2R

Từ đó, ta có AC1=h4R2h22R