Tìm các giới hạn sau
LG a
lim
Lời giải chi tiết:
- {1 \over 8};
LG b
\mathop {\lim }\limits_{x \to 2} \sqrt {{{{x^3} + 2x + 3} \over {{x^2} + 5}}}
Lời giải chi tiết:
{{\sqrt {15} } \over 3};
LG c
\mathop {\lim }\limits_{x \to - 2} {{{x^3} - {x^2} - x + 10} \over {{x^2} + 3x + 2}}
Lời giải chi tiết:
{{{x^3} - {x^2} - x + 10} \over {{x^2} + 3x + 2}} = {{\left( {x + 2} \right)\left( {{x^2} - 3x + 5} \right)} \over {\left( {x + 1} \right)\left( {x + 2} \right)}} = {{{x^2} - 3x + 5} \over {x + 1}} với mọi x \ne -2. Do đó
\mathop {\lim }\limits_{x \to - 2} {{{x^3} - {x^2} - x + 10} \over {{x^2} + 3x + 2}} = \mathop {\lim }\limits_{x \to - 2} {{{x^2} - 3x + 5} \over {x + 1}} = - 15;
LG d
\mathop {\lim }\limits_{x \to - 3} \left| {{{9 - {x^2}} \over {2{x^2} + 7x + 3}}} \right|.
Lời giải chi tiết:
\eqalign{ & {{9 - {x^2}} \over {2{x^2} + 7x + 3}} = {{\left( {3 - x} \right)\left( {3 + x} \right)} \over {\left( {2x + 1} \right)\left( {x + 3} \right)}} = {{3 - x} \over {2x + 1}} \cr & \mathop {\lim }\limits_{x \to - 3} \left| {{{9 - {x^2}} \over {2{x^2} + 7x + 3}}} \right| = \mathop {\lim }\limits_{x \to - 3} \left| {{{3 - x} \over {2x + 1}}} \right| \cr&= \left| {{{3 - \left( { - 3} \right)} \over {2.\left( { - 3} \right) + 1}}} \right| = {6 \over 5} \cr}