Câu 3.2 trang 85 sách bài tập Đại số và Giải tích 11 Nâng cao

Đề bài

Cho số thực \(x \ne k2\pi .\) Chứng minh rằng với mọi số nguyên dương n, ta luôn có

\(1 + \cos x + \cos 2x + ... + \cos nx = {{\sin {{\left( {n + 1} \right)x} \over 2}\cos {{nx} \over 2}} \over {\sin {x \over 2}}}\)

Lời giải chi tiết

Bằng phương pháp quy nạp, ta sẽ chứng minh

\(1 + \cos x + \cos 2x + ... + \cos nx = {{\sin {{\left( {n + 1} \right)x} \over 2}\cos {{nx} \over 2}} \over {\sin {x \over 2}}}\) (1) với mọi \(n \in N^*.\)

Với \(n = 1,\) vì \(x \ne k2\pi \) (theo giả thiết) nên

\(1 + \cos x = 2{\cos ^2}{x \over 2} = {{\sin {{\left( {1 + 1} \right)x} \over 2}\cos {{1.x} \over 2}} \over {\sin {x \over 2}}}\) (2)

Như vậy (1) đúng khi \(n = 1\)

Giả sử đã có (1) đúng khi \(n = k,k \in N^*.\) Khi đó , ta có

\(\eqalign{
& 1 + \cos x + \cos 2x + ... + \cos kx + \cos (k + 1)x \cr&= {{\sin {{\left( {1 + 1} \right)x} \over 2}\cos {{kx} \over 2}} \over {\sin {x \over 2}}} + \cos (k + 1)x \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\cos {{kx} \over 2} + \cos (k + 1)x.\sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\cos {{kx} \over 2} - 2{{\sin }^2}{{(k + 1)x} \over 2}.\sin {x \over 2} + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\left( {\cos {{kx} \over 2} - 2\sin {{(k + 1)x} \over 2}.\sin {x \over 2}} \right) + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{\sin {{\left( {k + 1} \right)x} \over 2}\left( {\cos {{kx} \over 2} + \cos {{(k + 2)x} \over 2} - \cos {{kx} \over 2}} \right) + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{{1 \over 2}\left( {\sin {{\left( {2k + 3} \right)x} \over 2} - \sin {x \over 2}} \right) + \sin {x \over 2}} \over {\sin {x \over 2}}} \cr
& = {{\sin {{\left( {k + 2} \right)x} \over 2}\cos {{(k + 1)x} \over 2}} \over {\sin {x \over 2}}} \cr} \)

Nghĩa là ta cũng có (1) đúng khi \(n = k + 1\).

Từ các chứng minh trên suy ra (1) đúng với mọi \(n \in N^*.\)