Câu 4.72 trang 148 sách bài tập Đại số và Giải tích 11 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Tìm giới hạn của các dãy số \(\left( {{u_n}} \right)\) với

LG a

\({u_n} = \sqrt {{{{1^2} + {2^2} + ... + {n^2}} \over {\left( {{n^2} + n} \right)\left( {n + 2} \right)}}} \) b)\({u_n} = {{{1^3} + {2^3} + ... + {n^3}} \over {\sqrt {{n^7} + 3{n^4} + 1} }}\)

Lời giải chi tiết:

\({1^2} + {2^2} + ... + {n^2} = {{n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 6}\)

\(\lim {u_n} = \lim \sqrt {{{n\left( {n + 1} \right)\left( {2n + 1} \right)} \over {6n\left( {n + 1} \right)\left( {n + 2} \right)}}} = {{\sqrt 3 } \over 3}\)

LG b

\({u_n} = \root 3 \of {n - 2{n^3}} \)

Lời giải chi tiết:

\({1^3} + {2^3} + ... + {n^3} = {{{n^2}{{\left( {n + 1} \right)}^2}} \over 4};\)

\(\lim {u_n} = \lim {{{n^2}{{\left( {n + 1} \right)}^2}} \over {4\sqrt {{n^7} + 3{n^4} + 1} }} = \lim {{{{\left( {1 + {1 \over n}} \right)}^2}} \over {4\sqrt {{1 \over n} + {3 \over {{n^4}}} + {1 \over {{n^8}}}} }} = + \infty \)

LG c

\({u_n} = {2^n} - {4.3^{n + 1}}\)

Lời giải chi tiết:

\(\lim {u_n} = {\mathop{\rm limn}\nolimits} .\root 3 \of {{1 \over {{n^2}}} - 2} = - \infty \)

LG d

\({u_n} = 100n - {2.5^n}\)

Lời giải chi tiết:

\({u_n} = {3^n}\left[ {{{\left( {{2 \over 3}} \right)}^n} - 12} \right]\) với mọi n ;

\( \lim u_n =- \infty ;\)

LG e

\({u_n} = {{{3^n} - {4^{n + 1}}} \over {{2^{2n}} + {{10.3}^n} + 7}}.\)

Lời giải chi tiết:

Ta có \({2^{2n}} = {4^n}.\) Do đó

\({u_n} = {{{{\left( {{3 \over 4}} \right)}^n} - 4} \over {1 + 10{{\left( {{3 \over 4}} \right)}^n} + {7 \over {{4^n}}}}}\) với mọi n.

Do đó \(\lim {u_n} = - 4.\)