Câu 4.1 trang 133 sách bài tập Đại số và Giải tích 11 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng các dãy số sau với số hạng tổng quát có giới hạn 0:

LG a

\({{{{\left( { - 1} \right)}^n}} \over n+ {1 \over 2}}\)

Lời giải chi tiết:

\(\left| {{{{{\left( { - 1} \right)}^n}} \over {n + {1 \over 2}}}} \right| = {1 \over {\left| {n + {1 \over 2}} \right|}} \le {1 \over n};\,\,\forall n > 0\)

\(\lim {1 \over n} = 0\)

Do đó: \(\lim {{{{\left( { - 1} \right)}^n}} \over {n + {1 \over 2}}} = 0\)

LG b

\({1 \over {n!}}\)

Lời giải chi tiết:

\({1 \over {n!}} = {1 \over {1.2...n}} \le {1 \over n};\,\,\forall n > 0\)

\(\lim {1 \over n} = 0\)

Do đó: \(\lim {1 \over {n!}} = 0\)

LG c

\({{\sin n} \over {n\sqrt n + 1}}\)

Lời giải chi tiết:

Vì \(\left| {{{\sin n} \over {n\sqrt n + 1}}} \right| = {{\left| {\sin n} \right|} \over {n\sqrt n + 1}} \le {1 \over n}\) với mọi n và \(\lim {1 \over n} = 0\) nên

\(\lim {{\sin n} \over {n\sqrt n + 1}} = 0\)