Câu 4.65 trang 145 sách bài tập Đại số và Giải tích 11 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giới hạn sau

LG a

\(\mathop {\lim }\limits_{x \to 2} {{3 - \sqrt {2x + 5} } \over {\sqrt {x + 2} - 2}}\)

Phương pháp giải:

Giải tương tự như bài 59e).

Lời giải chi tiết:

\( - {4 \over 3}\)

LG b

\(\mathop {\lim }\limits_{x \to 2} {{\sqrt {4{x^2} + 5} - \sqrt {3{x^2} + 4x + 1} } \over {{x^2} + 5x - 14}}\)

Lời giải chi tiết:

0;

LG c

\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {3{x^2} + 1} + x\sqrt 3 } \right)\)

Lời giải chi tiết:

0;

LG d

\(\mathop {\lim }\limits_{x \to + \infty } \left( {1 - 2x} \right)\sqrt {{{3x - 1} \over {{x^3} + 1}}} .\)

Lời giải chi tiết:

Vì \(1 - 2x < 0\) với mọi \(x > {1 \over 2}\) nên

\(1 - 2x = - \sqrt {{{\left( {1 - 2x} \right)}^2}} \) với mọi \(x > {1 \over 2}\).

Do đó

\(\left( {1 - 2x} \right)\sqrt {{{3x - 1} \over {{x^3} + 1}}} = - \sqrt {{{{{\left( {1 - 2x} \right)}^2}\left( {3x - 1} \right)} \over {{x^3} + 1}}} \)

\(\mathop {\lim }\limits_{x \to + \infty } \left( {1 - 2x} \right)\sqrt {{{3x - 1} \over {{x^3} + 1}}} = - 2\sqrt 3 .\)