Lựa chọn câu để xem lời giải nhanh hơn
Cho hai điểm phân biệt A, B và phép dời hình F khác với phép đồng nhất sao cho F(A) = A, F(B) = B. Chứng minh rằng:
LG a
Nếu điểm M nằm trên đường thẳng AB.
Lời giải chi tiết:
Giả sử M nằm trên đường thẳng AB và M’ là ảnh của M qua phép dời hình F.
Khi đó, vì F biến đường thẳng AB và giữ nguyên thứ tự ba điểm A, B, M cũng giống như thứ tự ba điểm A, B, M’.
Ngoài ra vì AM = AM’ và BM = BM’, nên điểm M phải trùng với M’.
LG b
F là phép đối xứng qua đường thẳng AB.
Lời giải chi tiết:
Gọi N là điểm không nằm trên đường thẳng AB và N' = F(N).
Ta có N’ khác N, vì \(N' \equiv N\) thì F là phép đồng nhất.
Như vậy, hai tam giác ABN và ABN’ bằng nhau suy ra N và N’ đối xứng với nhau qua đường thẳng AB.
Vậy F là phép đối xứng qua AB.