Câu 3.13 trang 87 sách bài tập Đại số và Giải tích 11 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right),\) với \({u_n} = n\) và \({v_n} = {2^n} + n\)

LG a

Chứng minh rằng với mọi \(n \ge 1\), ta luôn có

\({u_{n + 1}} = 2{u_n} - n + 1\) và \({v_{n + 1}} = 2{v_n} - n + 1\)

Lời giải chi tiết:

Ta có \({u_{n + 1}} = n + 1 = 2n - n + 1 = 2{u_n} - n + 1\left( {\forall n \ge 1} \right)\)

\({v_{n + 1}} = {2^{n + 1}} + n + 1 = 2.\left( {{2^n} + n} \right) - n + 1 \)

\(= 2{v_n} - n + 1\left( {\forall n \ge 1} \right)\)

LG b

Em có thể rút ra nhận xét gì từ kết quả đã chứng minh được ở phần a) ?

Lời giải chi tiết:

Hai dãy có cùng công thức truy hồi.