Giải bài 1.33 trang 13 SBT Đại số và Giải tích 11 Nâng cao

Đề bài

Tìm các giá trị x thuộc \(\left( { - {{3\pi } \over 4};\pi } \right)\) thỏa mãn phương trình sau với mọi m:

\({m^2}\sin x - m{\sin ^2}x - {m^2}\cos x + m{\cos ^2}x \)\(= \cos x - \sin x\)

Lời giải chi tiết

Viết phương trình đã cho dưới dạng

\(\left( {\sin x - \cos x} \right){m^2} + \left( {{{\cos }^2}x - {{\sin }^2}x} \right)m \)

\(+ \left( {\sin x - \cos x} \right) = 0.\)

Để đẳng thức này đúng với mọi m thì ta phải có

\(\left\{ \matrix{
\sin x - \cos x = 0 \hfill \cr
{\cos ^2}x - {\sin ^2}x = 0 \hfill \cr} \right.\)

\( \Leftrightarrow \) \(\sin x - \cos x = 0\)

\(\begin{array}{l}
\Leftrightarrow \sin x = \cos x\\
\Leftrightarrow \tan x = 1\\
\Leftrightarrow x = \frac{\pi }{4} + k\pi
\end{array}\)

Trong khoảng \(\left( { - {{3\pi } \over 4};\pi } \right)\) có đúng một giá trị \(x = {\pi \over 4}\) thỏa mãn phương trình đã cho với mọi \(m \in R\).