Câu 19 trang 118 Sách bài tập Hình học 11 Nâng cao

  •   

Đề bài

Cho hình chóp S.ABCD có đáy là hình bình hành, mặt bên SAB là tam giác vuông tại A. Với điểm M bất kì thuộc cạnh AD (M khác A và D), xét mặt phẳng (α) đi qua điểm M và song song với SA, CD.

a) Thiết diệm của hình chóp S.ABCD khi cắt bởi mp(α) là hình gì?

b) Tính diện tích thiết diện theo a và b; biết AB = a, SA = b, M là trung điểm của AD.

Lời giải chi tiết

a) Dễ thấy thiết diện là tứ giác MNPQ trong đó MN // QP // CD, MQ // SA.

Do SA ⊥ AB, AB //MN, MQ // SA nên thiết diện MNPQ là hình thang vuông tại M.

b) SMNPQ=12(MN+PQ).MQ

Do M là trung điểm của AD nên:

MQ=12SA=12bPQ=12CD=12aMN=a

Vậy SMNPQ=12(a+a2).b2=3ab8.