Đề bài
Các số \(x + 6y,5x + 2y,8x + y\) theo thứ tự đó lập thành một cấp số cộng ; đồng thời, các số \(x + {5 \over 3},y - 1,2x - 3y\) theo thứ tự đó lập thành một cấp số nhân. Hãy tìm x và y.
Lời giải chi tiết
Vì các số \(x + 6y,5x + 2y,8x + y\) theo thứ tự lập thành một cấp số cộng nên
\(2\left( {5x + 2y} \right) = \left( {x + 6y} \right) + \left( {8x + y} \right)\,\,\,hay\,\,\,x = 3y\) (1)
Vì các số \(x + {5 \over 3},y - 1,2x - 3y\) theo thứ tự lập thành một cấp số nhân nên
\({\left( {y - 1} \right)^2} = \left( {x + {5 \over 3}} \right)\left( {2x - 3y} \right)\)
hay \(2{x^2} - {y^2} - 3xy + {{10} \over 3}x - 3y - 1 = 0(2)\)
Thế (1) vào (2), ta được
\(8{y^2} + 7y - 1 = 0 \Leftrightarrow y = - 1\) hoặc \(y = {1 \over 8}\)
- Với \(y = - 1\) ta có \(x = - 3\)
- Với \(y = {1 \over 8}\) ta có \(x = {3 \over 8}\)