Câu 2 trang 221 Sách bài tập Hình học 11 Nâng cao

  •   

Đề bài

Cho điểm O nằm trên đường thẳng a. Gọi Đ là phép đối xứng qua đường thẳng a, Q là phép quay tâm O góc quay φ và F là phép hợp thành của Đ và Q. Với điểm M bất kì, gọi M’ = F(M) và I là trung điểm của MM’.

a) Tìm quỹ tích của I khi M thay đổi.

b) Chứng minh rằng F là phép đối xứng trục.

Lời giải chi tiết

a) Nếu Đ biến điểm M thành điểm N thì Q biến điểm N thành điểm M’. Gọi J là trung điểm của MN thì J nằm trên a và OJ là phân giác của góc MON.-

Ta có:

(OJ,OI)=(OM,OI)(OM,OJ)=12[(OM,OM)(OM,ON)]=12(ON,OM)=φ2.

Như vậy nếu gọi Q’ là phép quay tâm O góc quay φ2 thì Q biến đường thẳng OJ (tức là đường thẳng a) thành đường thẳng OI. Vậy quỹ tích của I là đường thẳng a’, ảnh của a là phép quay O’.

b) Từ câu a) ta suy ra a’ là trung trực của đoạn thẳng MM’. Suy ra F là phéo đối xứng trục với trục là đường thẳng a’.