Video hướng dẫn giải
Trên mặt phẳng tọa độ, hãy tìm tập hợp điểm biểu diễn số phức \(z\) thỏa mãn bất đẳng thức:
LG a
a) \(| z| < 2\)
Phương pháp giải:
Gọi số phức z có dạng \(z = a + bi\), dựa vào các giải thiết đề bài cho thiết lập mối liên hệ giữa a, b và suy ra tập hợp các điểm biểu diễn cho số phức z.
Lời giải chi tiết:
Đặt \(z = a + bi ( a, b ∈ \mathbb R)\). Ta có:
a) \(\left| z \right| < 2 \Leftrightarrow \sqrt {{a^2} + {b^2}} < 2 \) \(\Leftrightarrow {a^2} + {b^2} < 4\)
Tập hợp các điểm \(M(a; b)\) là hình tròn tâm \(O\) (gốc tọa độ), bán kính \(2\) (không kể biên)
LG b
b) \(|z – i| ≤ 1\)
Lời giải chi tiết:
\(\eqalign{
& \left| {z{\rm{ }}-i} \right|{\rm{ }} \le {\rm{ }}1 \Leftrightarrow |a + (b - 1)i| \le 1 \Leftrightarrow \sqrt {{a^2} + {{(b - 1)}^2}} \le 1 \cr
& \Leftrightarrow {a^2} + {(b - 1)^2} \le 1 \cr} \)
Tập hợp các điểm \(M (a; b)\) là hình tròn tâm \(I(0, 1)\), bán kính \(1\) (kể cả biên)
LG c
c) \(|z – 1 – i| < 1\)
Lời giải chi tiết:
\(|z – 1 – i| < 1 ⇔ |(a – 1) + (b – 1)i| < 1 \) \(⇔ (a – 1)^2+ (b – 1)^2 < 1\)
Tập hợp các điểm \(M(a; b)\) biểu diễn số phức \(z\) là hình tròn (không kể biên) tâm \(I (1, 1)\), bán kính \(1\).