Đề bài
Cho hai đường thẳng chéo nhau \(d\) và \(d’\). Đoạn thẳng \(AB\) có độ dài \(a\) trượt trên \(d\), đoạn thẳng \(CD\) có độ dài \(b\) trượt trên \(d’\). Chứng minh rằng khối tứ diện \(ABCD\) có thể tích không đổi.
Video hướng dẫn giải
Lời giải chi tiết
Gọi \(h\) là độ dài đường vuông góc chung của \(d\) và \(d’\), \(α\) là góc giữa hai đường thẳng \(d\) và \(d’\). Qua \(B, A, C\) dựng hình bình hành \(BACF\). Qua \(A,C, D\) dựng hình bình hành \(ACDE\).
Khi đó \(CFD.ABE\) là một hình lăng trụ tam giác. Ta có:
\[\begin{array}{l}
{V_{D.ABE}} + {V_{D.BACF}} = {V_{CFD.ABE}}\\
{V_{D.ABE}} = \dfrac{1}{3}{V_{CFD.ABE}} \Rightarrow {V_{D.BACF}} = \dfrac{2}{3}{V_{CFD.ABE}}\\
{V_{D.ABC}} = \dfrac{1}{2}{V_{D.BACF}} \Rightarrow {V_{D.ABC}} = \dfrac{1}{2}.\dfrac{2}{3}{V_{CFD.ABE}} = \dfrac{1}{3}{V_{CFD.ABE}}
\end{array}\]
Kẻ \(AH \bot \left( {CDF} \right)\) ta có: \({V_{ABCD}} = \dfrac{1}{3}.V_{CFD.ABE} = \dfrac{1}{3}.AH.{S_{CDF}}\)
Ta có:
\(\begin{array}{l}AB//CF \Rightarrow AB//\left( {CDF} \right) \supset CD\\\Rightarrow d\left( {d;d'} \right) = d\left( {AB;CD} \right) = d\left( {AB;\left( {CDF} \right)} \right) \end{array}\)
\(= d\left( {A;\left( {CDF}\right)} \right) = AH = h\)
\(AB//CF \Rightarrow \widehat {\left( {d;d'} \right)} = \widehat {\left( {AB;CD} \right)} = \widehat {\left( {CF;CD} \right)} = \widehat {DCF} = \alpha \)
\( \Rightarrow {S_{CDF}} = \dfrac{1}{2}.CD.CF.\sin \widehat {DCF} = \dfrac{1}{2}ab\sin \alpha \)
Vậy \(V_{ABCD}=\dfrac{1}{3}.h.\dfrac{1}{2}ab\sin \alpha =\dfrac{1}{6}.h. ab. sinα = const\). (đpcm)