Giải bài 4 trang 113 SGK Giải tích 12

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Sử dụng phương pháp tích phân từng phần, hãy tính tích phân:

LG a

\(\int_{0}^{\dfrac{\pi}{2}}(x+1)\sin xdx\)

Phương pháp giải:

Phương pháp tích phân từng phần: \(\int\limits_a^b {udv} = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Đặt \(\left\{ \begin{array}{l}u = x + 1\\dv = \sin xdx\end{array} \right.\)

Lời giải chi tiết:

Đặt \(\left\{ \begin{array}{l}u = x + 1\\dv = \sin xdx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = dx\\v = - \cos x\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^{\frac{\pi }{2}} {\left( {x + 1} \right)\sin xdx} \\= \left. { - \left( {x + 1} \right)\cos x} \right|_0^{\frac{\pi }{2}} + \int\limits_0^{\frac{\pi }{2}} {\cos xdx} \\= \left. { - \left( {x + 1} \right)\cos x} \right|_0^{\frac{\pi }{2}} + \left. {\sin x} \right|_0^{\frac{\pi }{2}}\end{array}\)

\( = - \left( {\frac{\pi }{2} + 1} \right)\cos \frac{\pi }{2} + \left( {0 + 1} \right)\cos 0 \)\(+ \sin \frac{\pi }{2} - \sin 0\)

\(=0+1+1-0=2\)

LG b

\(\int_{1}^{e}x^{2}\ln xdx\)

Phương pháp giải:

Phương pháp tích phân từng phần: \(\int\limits_a^b {udv} = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = {x^2}dx\end{array} \right.\)

Lời giải chi tiết:

Đặt \(\left\{ \begin{array}{l}u = \ln x\\dv = {x^2}dx\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}du = \frac{{dx}}{x}\\v = \frac{{{x^3}}}{3}\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_1^e {{x^2}\ln x} dx \\= \left. {\left( {\ln x.\frac{{{x^3}}}{3}} \right)} \right|_1^e - \frac{1}{3}\int\limits_1^e {{x^2}dx} \\= \left. {\left( {\ln x.\frac{{{x^3}}}{3}} \right)} \right|_1^e - \left. {\frac{{{x^3}}}{9}} \right|_1^e\end{array}\)

\(\begin{array}{l}
= \ln e.\frac{{{e^3}}}{3} - \ln 1.\frac{{{1^3}}}{3} - \left( {\frac{{{e^3}}}{9} - \frac{{{1^3}}}{9}} \right)\\
= \frac{{{e^3}}}{3} - 0 - \frac{{{e^3}}}{9} + \frac{1}{9}\\
= \frac{{2{e^3}}}{9} + \frac{1}{9}\\
= \frac{1}{9}\left( {2{e^3} + 1} \right)
\end{array}\)

LG c

\(\int_{0}^{1}\ln(1+x)dx\);

Phương pháp giải:

Phương pháp tích phân từng phần: \(\int\limits_a^b {udv} = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {1 + x} \right)\\dv = dx\end{array} \right.\)

Lời giải chi tiết:

Đặt \(\left\{ \begin{array}{l}u = \ln \left( {1 + x} \right)\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{{dx}}{{1 + x}}\\v = x\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^1 {\ln \left( {x + 1} \right)dx} \\= \left. {\left( {x.\ln \left( {1 + x} \right)} \right)} \right|_0^1 - \int\limits_0^1 {\frac{x}{{x + 1}}dx} \\= \left. {\left( {x.\ln \left( {1 + x} \right)} \right)} \right|_0^1 - \int\limits_0^1 {\frac{{x + 1 - 1}}{{x + 1}}dx} \\= \left. {\left( {x.\ln \left( {1 + x} \right)} \right)} \right|_0^1 - \int\limits_0^1 {\left( {1 - \frac{1}{{x + 1}}} \right)dx} \\= \left. {\left( {x.\ln \left( {1 + x} \right)} \right)} \right|_0^1 - \left. {\left( {x - \ln \left| {x + 1} \right|} \right)} \right|_0^1\end{array}\)

\(\begin{array}{l}
= 1.\ln \left( {1 + 1} \right) - 0.\ln \left( {0 + 1} \right)\\
- \left( {1 - \ln |1+1| - 0 + \ln |0+1|} \right)\\
= \ln 2 - 1 + \ln 2\\
= 2\ln 2 - 1
\end{array}\)

LG d

\(\int_{0}^{1}(x^{2}-2x-1)e^{-x}dx\)

Phương pháp giải:

Phương pháp tích phân từng phần: \(\int\limits_a^b {udv} = \left. {uv} \right|_a^b - \int\limits_a^b {vdu} \).

Đặt \(\left\{ \begin{array}{l}u = {x^2} - 2x - 1\\dv = {e^{ - x}}dx\end{array} \right.\)

Lời giải chi tiết:

Đặt \(\left\{ \begin{array}{l}u = {x^2} - 2x + 1\\dv = {e^{ - x}}dx\end{array} \right. \)\(\Rightarrow \left\{ \begin{array}{l}du = \left( {2x - 2} \right)dx\\v = - {e^{ - x}}\end{array} \right.\)

\(\begin{array}{l}\Rightarrow \int\limits_0^1 {\left( {{x^2} - 2x - 1} \right){e^{ - x}}dx} \\= \left. { - {e^{ - x}}\left( {{x^2} - 2x - 1} \right)} \right|_0^1 \\+ 2\int\limits_0^1 {\left( {x - 1} \right){e^{ - x}}dx} \\= \left. { - {e^{ - x}}\left( {{x^2} - 2x - 1} \right)} \right|_0^1 + 2{I_1}\\= 2{e^{ - 1}} - 1 + 2{I_1}\end{array}\)

Đặt \(\left\{ \begin{array}{l}u = x - 1\\dv = {e^{ - x}}\end{array} \right. \)\(\Rightarrow \left\{ \begin{array}{l}du = dx\\v = - {e^{ - x}}\end{array} \right.\).

\(\begin{array}{l}\Rightarrow {I_1} = \left. { - {e^{ - x}}\left( {x - 1} \right)} \right|_0^1 + \int\limits_0^1 {{e^{ - x}}dx} \\= \left. { - {e^{ - x}}\left( {x - 1} \right)} \right|_0^1\left. { - {e^{ - x}}} \right|_0^1\\= - 1 - \left( {{e^{ - 1}} - 1} \right) =- {e^{ - 1}}\end{array}\).

Vậy \(I = 2{e^{ - 1}} - 1 - 2{e^{ - 1}} = - 1\).