Giải bài 4 trang 85 SGK Giải tích 12

  •   

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình lôgarit:

LG a

a) 12log(x2+x5)=log5x+log15x12log(x2+x5)=log5x+log15x

Phương pháp giải:

Các bước giải phương trình logarit:

+) Tìm điều kiện xác định.

+) Sử dụng các phương pháp tương ứng để giải phương trình (có các phương pháp: đưa về cùng cơ số, đặt ẩn phụ, mũ hóa….).

+) Giải phương trình để tìm ẩn và so sánh với điều kiện xác định rồi kết luận nghiệm của phương trình.

Bài toán này chủ yếu sử dụng phương pháp đưa về cùng cơ số: logaf(x)=logag(x){f(x)>0g(x)>0f(x)=g(x).

Chú ý: loga+logb=logab; logalogb=logab

Lời giải chi tiết:

12log(x2+x5)=log5x+log15x.

Điều kiện: {x2+x5>05x>015x>0{[x>1+212x<1212x>0 x>1+2121,79.

Pt12.log(x2+x5)=log(5x.15x)12.log(x2+x5)=log1log(x2+x5)=0x2+x5=100=1x2+x6=0(x+3)(x2)=0[x+3=0x2=0[x=3(ktm)x=2(tm).

Vậy phương trình có nghiệm x=2.

LG b

b) 12.log(x24x1)=log8xlog4x

Lời giải chi tiết:

12.log(x24x1)=log8xlog4x.

Điều kiện: {x24x1>08x>04x>0 {[x>2+5x<25x>0 x>2+5.

Pt12.log(x24x1)=log8x4xlogx24x1=log2x24x1=2x24x1=4x24x5=0(x+1)(x5)=0[x+1=0x5=0[x=1(ktm)x=5(tm).

Vậy phương trình có nghiệm x=5.

LG c

c) log2x+4log4x+log8x=13

Lời giải chi tiết:

log2x+4log4x+log8x=13.

Điều kiện: x>0.

Ptlog212x+4log22x+log23x=132log2x+4.12.logxx+13.log2x=13133.log2x=13log2x=3x=23=8(tm).

Vậy phương trình có nghiệm x=8.