Video hướng dẫn giải
Tìm các số thực \(x\) và \(y\), biết:
LG a
a) \((3x - 2) + (2y + 1)i = (x + 1) - (y - 5)i\)
Phương pháp giải:
Cho hai số phức: \(z_1=a_1+b_1i\) và \(z_2=a_2+b_2i.\)
Khi đó: \({z_1} = {z_2} \Leftrightarrow \left\{ \begin{array}{l}
{a_1} = {a_2}\\
{b_1} = {b_2}
\end{array} \right..\)
Lời giải chi tiết:
Từ định nghĩa bằng nhau của hai số phức, ta có:
\((3x - 2) + (2y + 1)i = (x + 1) - (y - 5)i\) \(⇔\left\{\begin{matrix} 3x-2=x+1\\ 2y+1=-(y-5) \end{matrix}\right. \)
\( \Leftrightarrow \left\{ \begin{array}{l}
2x = 3\\
3y = 4
\end{array} \right.\)
\(⇔ \left\{\begin{matrix} x=\dfrac{3}{2}\\ y=\dfrac{4}{3} \end{matrix}\right..\)
Vậy \( \left( {x;\;y} \right) = \left( {\dfrac{3}{2};\;\dfrac{4}{3}} \right).\)
LG b
b) \((1 - 2x) - i\sqrt 3 = \sqrt 5 + (1 - 3y)i\)
Lời giải chi tiết:
Từ định nghĩa bằng nhau của hai số phức, ta có:
\((1 - 2x) - i\sqrt 3 = \sqrt 5 + (1 - 3y)i\)
\( ⇔ \left\{\begin{matrix} 1-2x=\sqrt{5}\\ 1-3y=-\sqrt{3} \end{matrix}\right. \)
\( \Leftrightarrow \left\{ \begin{array}{l}
2x = 1 - \sqrt 5 \\
3y = 1 + \sqrt 3
\end{array} \right.\)
\(⇔ \left\{\begin{matrix} x=\dfrac{1-\sqrt{5}}{2}\\ y=\dfrac{1+\sqrt{3}}{3} \end{matrix}\right..\)
Vậy \( \left( {x;\;y} \right) = \left( \dfrac{1-\sqrt{5}}{2};\;\dfrac{1+\sqrt{3}}{3} \right).\)
LG c
c) \((2x + y) + (2y - x)i \) \(= (x - 2y + 3) + (y + 2x + 1)i\)
Lời giải chi tiết:
Từ định nghĩa bằng nhau của hai số phức, ta có:
\((2x + y) + (2y - x)i = (x - 2y + 3) + (y + 2x + 1)i\)
\( ⇔ \left\{\begin{matrix} 2x+y=x-2y+3\\ 2y-x=y+2x+1 \end{matrix}\right. ⇔ \left\{\begin{matrix} x+3y =3\\ -3x+y=1 \end{matrix}\right.\)
\(⇔ \left\{\begin{matrix} x=0\\ y=1 \end{matrix}\right.\).
Vậy \( \left( {x;\;y} \right)= \left( {0;\;1} \right).\)