Giải bài 6 trang 45 SGK Giải tích 12

  •   

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số f(x)=x3+3x2+9x+2.

Phương pháp giải:

*Tập xác định

Tìm tập xác định của hàm số

*Sự biến thiên của hàm số

- Xét chiều biến thiên của hàm số

+ Tính đạo hàm y

+ Tại các điểm đó đạo hàm y bằng 0 hoặc không xác định

+ Xét dấu đạo hàm y và suy ra chiều biến thiên của hàm số.

- Tìm cực trị

- Tìm các giới hạn tại vô cực, các giới hạn vô cực và tìm tiệm cận (nếu có)

- Lập bảng biến thiên (Ghi các kết quả tìm được vào bảng biến thiên)

*Đồ thị

Dựa vào bảng biến thiên và các yếu tố xác định ở trên để vẽ đồ thị,

- Nếu hàm số tuần hoàn với chu kì T thì chỉ cần khảo sát sự biến thiên và vẽ đồ thị trên một chu kì, sau đó tịnh tiến đồ thị song song với trục Ox

- Nên tính thêm tọa độ một số điểm, đặc biệt là tọa độ các giao điểm của đồ thị với các trục tọa độ.

- Nêu lưu ý đến tính chẵn , tính lẻ của hàm số và tính đối xứng của đồ thị để vẽ cho chính xác.

Lời giải chi tiết:

Tập xác định: D=R

* Sự biến thiên:

Ta có:y=3x2+6x+9.

y=03x2+6x+9=0

3(x+1)(x3)=0[x+1=0x3=0[x=1x=3.

- Hàm số đồng biến trên khoảng: (1;3), nghịch biến trên khoảng (;1)(3;+)

- Cực trị:

Hàm số đạt cực đại tại x=3; yCĐ=29

Hàm số đạt cực tiểu tại x=1; yCT=3

- Giới hạn:

limxf(x)=+
limx+f(x)=

-Bảng biến thiên:

* Đồ thị

Đồ thị hàm số giao trục Oy tại điểm (0;2)

Đồ thị hàm số nhận I(1;13) làm tâm đối xứng.

LG b

b) Giải bất phương trình f(x1)>0.

Phương pháp giải:

Tính đạo hàm y=f(x). Thay x1 vào vị trí của x để tính f(x1) và giải bất phương trình f(x1)>0.

Lời giải chi tiết:

y=f(x)=x3+3x2+9x+2

f(x)=3x2+6x+9.

f(x1)=3(x1)2+6(x1)+9

=3(x22x+1)+6x6+9 =3x2+6x3+6x+3

= 3x2+12x

f(x1)>0 3x2+12x>00<x<4

LG c

c) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x0, biết rằng f(x0)=6.

Phương pháp giải:

Giải phương trình f(x0)=6 để tìm x0. Sau đó viết phương trình tiếp tuyến của đồ thị hàm số (C) theo công thức: y=y(x0)(xx0)+y(x0).

Lời giải chi tiết:

f(x)=6x+6

f(x0)=66x0+6=6 x0=2

Do đó: f(2)=9,f(2)=24.

Phương trình tiếp tuyến của (C) tại x0=2 là:

y=f(2)(x2)+f(2) y=9(x2)+24 y=9x+6.