Giải bài 1 trang 68 SGK Hình học 12

  •   

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho ba vectơ a(2;5;3),b(0;2;1),c(1;7;2)a(2;5;3),b(0;2;1),c(1;7;2)

LG a

a) Tính tọa độ của vectơ d=4.a13b+3cd=4.a13b+3c.

Phương pháp giải:

Cho a(a1;a2);a3b(b1;b2;b3)a(a1;a2);a3b(b1;b2;b3)kR.

Khi đó:

k.a=(ka1;ka2;ka3)a±b=(a1±b1;a2±b2;a3±b3)

Lời giải chi tiết:

d=4a13b+3cd=4(2;5;3)13(0;2;1)+3(1;7;2)d=(8;20;12)(0;23;13)+(3;21;6)d=(11;13;553)

LG b

b) Tính tọa độ của vectơ e=a4b2c.

Lời giải chi tiết:

e=a4b2ce=(2;5;3)4(0;2;1)2(1;7;2)e=(2;5;3)(0;8;4)(2;14;4)e=(0;27;3)