Giải bài 1 trang 77 SGK Giải tích 12

  •   

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Vẽ đồ thị của các hàm số:

LG a

a) y=4x;

Phương pháp giải:

Các bước khảo sát và vẽ đồ thị hàm số:

Bước 1: Tập xác định.

Bước 2: Sự biến thiên.

- Tính y, tìm các điểm mà tại đó y bằng 0 hoặc không xác định.

- Xét dấu y và suy ra các khoảng đơn điệu của đồ thị hàm số.

- Tính các giới hạn đặc biệt: Giới hạn tại vô cực và giới hạn tại các điểm mà hàm số không xác định.

- Tìm các tiệm cận của đồ thị hàm số (nếu có).

- Lập bảng biến thiên.

Bước 3: Đồ thị.

- Tìm giao điểm của đồ thị hàm số với các trục tọa độ (nếu có).

- Vẽ đồ thị hàm số dựa vào các yếu tố ở trên.

Lời giải chi tiết:

Đồ thị hàm số y=4x

*) Tập xác định: R

*) Sự biến thiên:

y=4xln4>0,xR

- Hàm số đồng biến trên R

- Giới hạn đặc biệt:

lim

Tiệm cận ngang: y=0.

- Bảng biến thiên:

Đồ thị:

Đồ thị nằm hoàn toàn phía trên trục hoành, cắt trục tung tại điểm (0;1), đi qua điểm (1;4) và qua các điểm (\dfrac{1}{2}; 2), (-\dfrac{1}{2}; \dfrac{1}{2}), (-1; \dfrac{1}{4}).

LG b

b) y= \left ( \dfrac{1}{4} \right )^{x}.

Phương pháp giải:

Các bước khảo sát và vẽ đồ thị hàm số:

Bước 1: Tập xác định.

Bước 2: Sự biến thiên.

- Tính y', tìm các điểm mà tại đó y' bằng 0 hoặc không xác định.

- Xét dấu y' và suy ra các khoảng đơn điệu của đồ thị hàm số.

- Tính các giới hạn đặc biệt: Giới hạn tại vô cực và giới hạn tại các điểm mà hàm số không xác định.

- Tìm các tiệm cận của đồ thị hàm số (nếu có).

- Lập bảng biến thiên.

Bước 3: Đồ thị.

- Tìm giao điểm của đồ thị hàm số với các trục tọa độ (nếu có).

- Vẽ đồ thị hàm số dựa vào các yếu tố ở trên.

Lời giải chi tiết:

Đồ thị hàm số y=\left ( \dfrac{1}{4} \right )^{x}

*) Tập xác định: \mathbb R

*) Sự biến thiên:

y' = {\left( {\dfrac{1}{4}} \right)^x}.\ln \left( {\dfrac{1}{4}} \right) = - {\left( {\dfrac{1}{4}} \right)^x}\ln 4 < 0\,\,\forall x \in R

- Hàm số nghịch biến trên \mathbb R

- Giới hạn:

\eqalign{ & \mathop {\lim }\limits_{x \to - \infty } y = + \infty \cr & \mathop {\lim }\limits_{x \to + \infty } y = 0 \cr}

Tiệm cận ngang y=0

- Bảng biến thiên:

*) Đồ thị:

Đồ thị hàm số nằm hoàn toàn về phía trên trục hoành, cắt trục tung tại điểm (0; 1), đi qua điểm (1; \dfrac{1}{4}) và qua các điểm (-\dfrac{1}{2}; 2), (-1;4).