Giải bài 3 trang 18 SGK Giải tích 12

  •   

Đề bài

Chứng minh rằng hàm số y=|x| không có đạo hàm tại x=0 nhưng vẫn đạt cực tiểu tại điểm đó.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Tính giới hạn trái, giới hạn phải của f(x)f(x0)xx0 khi xx0, từ đó suy ra không tồn tại đạo hàm tại x=x0.

- Chứng minh f(x)f(0) với mọi xR.

Lời giải chi tiết

Ta có:

y=f(x)=|x|={xkhix0xkhix<0lim0+f(x)f(0)x0=limx0+xx=limx0+1x=+limx0f(x)f(0)x0=limx0xx=limx0x(x)2=limx01x=limx0+f(x)f(0)x0limx0f(x)f(0)x0

Không tồn tại đạo hàm của hàm số đã cho tại x=0.

Dễ thấy f(x)=|x|0 với mọi xRf(0)=0 nên x=0 chính là điểm cực tiểu của hàm số.