Đề bài
Cho \(z = a + bi \in \mathbb{C}\), biết \(\dfrac{z}{{\overline z }} \in \mathbb{R}\). Kết luận nào sau đây đúng?
A. \(a = 0\) B. \(b = 0\)
C. \(a = b\) D. \(ab = 0\)
Phương pháp giải - Xem chi tiết
Tính \(\overline z \) và \(\dfrac{z}{{\overline z }}\) rồi sử dụng lý thuyết số phức \(x + yi \in \mathbb{R} \Leftrightarrow y = 0\).
Lời giải chi tiết
Ta có: \(\overline z = a - bi\)
\( \Rightarrow \dfrac{z}{{\overline z }} = \dfrac{{a + bi}}{{a - bi}}\) \( = \dfrac{{\left( {a + bi} \right)\left( {a + bi} \right)}}{{\left( {a - bi} \right)\left( {a + bi} \right)}}\) \( = \dfrac{{{a^2} - {b^2} + 2abi}}{{{a^2} + {b^2}}} \in \mathbb{R}\) \( \Leftrightarrow \dfrac{{2ab}}{{{a^2} + {b^2}}} = 0 \Leftrightarrow ab = 0\).
Chọn D.