Giải bài 2.7 trang 47 SBT hình học 12

  •   

Đề bài

Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A. Một điểm M chạy trên mặt phẳng (P) sao cho góc ^ABM=^BMH . Chứng minh rằng điểm M luôn luôn nằm trên một mặt trụ tròn xoay có trục là AB.

Phương pháp giải - Xem chi tiết

Gọi I là hình chiếu của M lên AB. Chứng minh MI=BH không đổi và suy ra khối trụ cần tìm.

Lời giải chi tiết

Giả sử ta có điểm M thuộc mặt phẳng (P) thỏa mãn các điều kiện của giả thiết đã cho.

Gọi I là hình chiếu vuông góc của M trên AB.

Xét tam giác vuông BIM và MHB có:

BM chung.

ˆB=ˆM (giả thiết)

Suy ra ΔBIM=ΔMHB(chgn)

Do đó MI = BH không đổi hay M luôn cách AB một khoảng không đổi.

Vậy điểm M luôn luôn nằm trên mặt trụ trục AB và có bán kính bằng BH.