Giải bài 2 trang 168 SBT hình học 12

  •   

Đề bài

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Gọi M, N lần lượt là trung điểm của AB và AD, H là giao điểm của MD và NC. Biết rằng SH là đường cao của hình chóp đã cho và cạnh SC tạo với đáy hình chóp đó một góc bằng 60o

a) Thể tích hình chóp S.CDNM

b) Tính khoảng cách giữa DM và SC.

Lời giải chi tiết

a) Xét các hình vuông ABCD.

Ta có hai tam giác vuông ADM và DCN bằng nhau (h-c-g-v) nên ∠DMA = ∠CND.

^CND+^CNA=1800 ^DMA+^CNA=1800

Tứ giác ANHM nội tiếp

^MAN+^MHN=1800 ^MHN=1800^MAN =1800900=900

Từ đó suy ra DM ⊥ CN. Trong tam giác vuông CDN ta có:

CD2 = CH.CN ⇒ CH = 2a/√5

Suy ra SH = CH.tan60o ==2a5.3=2a35

SCDNM = SABCD - SAMN - SBCM =a212.a2.a212a.a2=5a28

VS.CDNM=13SCDNM.SH=13.5a28.2a35 =a31512

b) Gọi I là chân đường vuông góc kẻ từ H lên SC

Vì MD ⊥ (SCN), MD ∩ (SCN) = H nên

d(MD, SC) = d(H, SC) = HI = HC.sin60o =a155.