Bài 5 Trang 145 SGK Đại số và Giải tích 12 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Dùng phương pháp đổi biến số, tìm nguyên hàm của các hàm số sau:

LG a

\(f\left( x \right) = {{9{x^2}} \over {\sqrt {1 - {x^3}} }}\)

Lời giải chi tiết:

Đặt \(\sqrt {1 - {x^3}} = u\) \( \Rightarrow {u^2} = 1 - {x^3}\) \( \Rightarrow 2udu = - 3{x^2}dx\)

\( \Rightarrow \int {f\left( x \right)dx} \)\( = \int {\dfrac{{ - 3.\left( { - 3{x^2}} \right)dx}}{{\sqrt {1 - {x^3}} }}} \) \( = \int {\dfrac{{ - 3.2udu}}{u}} \) \( = - 6\int {du} = - 6u + C\) \( = - 6\sqrt {1 - {x^3}} + C\)

Cách khác:

Đặt \(1 - {x^3} = u \Rightarrow du = - 3{x^2}dx\)

\( \Rightarrow \int {f\left( x \right)dx} \)\( = \int {\dfrac{{ - 3.\left( { - 3{x^2}dx} \right)}}{{\sqrt {1 - {x^3}} }}} = \int {\dfrac{{ - 3du}}{{\sqrt u }}} \) \( = \int { - 3{u^{ - \dfrac{1}{2}}}du} = - 3.\dfrac{{{u^{ - \dfrac{1}{2} + 1}}}}{{ - \dfrac{1}{2} + 1}} + C\) \( = - 3.\dfrac{{{u^{\dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + C = - 6{u^{\dfrac{1}{2}}} + C\) \( = - 6\sqrt u + C = - 6\sqrt {1 - {x^3}} + C\)

LG b

\(f\left( x \right) = {1 \over {\sqrt {5x + 4} }}\)

Lời giải chi tiết:

Đặt \(u = \sqrt {5x + 4} \Rightarrow {u^2} = 5x + 4\) \( \Rightarrow 2udu = 5dx \Rightarrow dx = {{2u.du} \over 5}\)

\( \Rightarrow \int {f\left( x \right)dx} = \int {\dfrac{1}{u}.\dfrac{{2udu}}{5}} = \int {\dfrac{2}{5}du} \) \( = \dfrac{2}{5}u + C = \dfrac{2}{5}\sqrt {5x + 4} + C\)

Cách 2:

\(\int {\dfrac{1}{{\sqrt {5x + 4} }}dx} = \int {\dfrac{1}{5}.\dfrac{{d\left( {5x + 4} \right)}}{{{{\left( {5x + 4} \right)}^{\dfrac{1}{2}}}}}} \)\( = \int {\dfrac{1}{5}.{{\left( {5x + 4} \right)}^{ - \dfrac{1}{2}}}d\left( {5x + 4} \right)} \) \( = \dfrac{1}{5}.\dfrac{{{{\left( {5x + 4} \right)}^{ - \dfrac{1}{2} + 1}}}}{{ - \dfrac{1}{2} + 1}} + C\) \( = \dfrac{1}{5}.\dfrac{{{{\left( {5x + 4} \right)}^{\dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + C\) \( = \dfrac{2}{5}{\left( {5x + 4} \right)^{\dfrac{1}{2}}} + C\) \( = \dfrac{2}{5}\sqrt {5x + 4} + C\)

Cách 3

Đặt \(5x + 4 = u\) \( \Rightarrow 5dx = du \Rightarrow dx = \dfrac{{du}}{5}\)

\( \Rightarrow \int {f\left( x \right)dx} = \int {\dfrac{1}{{\sqrt u }}.\dfrac{{du}}{5}} \) \(= \dfrac{2}{5}\int {\dfrac{1}{{2\sqrt u }}du} \) \( = \dfrac{2}{5}\sqrt u + C = \dfrac{2}{5}\sqrt {5x + 4} + C\)

LG c

\(f\left( x \right) = x\root 4 \of {1 - {x^2}} \)

Lời giải chi tiết:

Đặt \(u = \root 4 \of {1 - {x^2}} \) \(\Rightarrow {u^4} = 1 - {x^2}\) \( \Rightarrow 4{u^3}du = - 2xdx\) \( \Rightarrow xdx = - 2{u^3}du\)

\( \Rightarrow \int {f\left( x \right)dx} \)\( = \int { - 2{u^3}.udu} = - 2\int {{u^4}du} \) \( = - 2.\dfrac{{{u^5}}}{5} + C = - \dfrac{{2{u^5}}}{5} + C\) \( = - \dfrac{{2{{\left( {\sqrt[4]{{1 - {x^2}}}} \right)}^5}}}{5} + C\) \( = - \dfrac{{2\left( {1 - {x^2}} \right)\sqrt[4]{{1 - {x^2}}}}}{5} + C\)

Cách khác:

Đặt \(1 - {x^2} = u\) \( \Rightarrow - 2xdx = du \Rightarrow xdx = - \dfrac{{du}}{2}\)

\( \Rightarrow \int {f\left( x \right)dx} \) \( = \int {\sqrt[4]{u}.\left( { - \dfrac{{du}}{2}} \right)} \) \( = - \dfrac{1}{2}\int {{u^{\dfrac{1}{4}}}du} \) \( = - \dfrac{1}{2}.\dfrac{{{u^{\dfrac{1}{4} + 1}}}}{{\dfrac{1}{4} + 1}} + C\)\( = - \dfrac{1}{2}.\dfrac{{{u^{\dfrac{5}{4}}}}}{{\dfrac{5}{4}}} + C = - \dfrac{2}{5}{u^{\dfrac{5}{4}}} + C\) \( = - \dfrac{2}{5}\sqrt[4]{{{{\left( {1 - {x^2}} \right)}^5}}} + C\) \( = - \dfrac{2}{5}\left( {1 - {x^2}} \right)\sqrt[4]{{1 - {x^2}}} + C\)

LG d

\(f\left( x \right) = {1 \over {\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}\)

Lời giải chi tiết:

Đặt \(\displaystyle u = 1 + \sqrt x \) \(\displaystyle \Rightarrow du = {{du} \over {2\sqrt x }} \) \(\displaystyle \Rightarrow {{dx} \over {\sqrt x }} = 2du\)

\(\displaystyle \Rightarrow \int {{{dx} \over {\sqrt x {{\left( {1 + \sqrt x } \right)}^2}}}} \) \(\displaystyle = \int {{{2u} \over {{u^2}}}} = - {2 \over u} + C \) \(\displaystyle = - {2 \over {1 + \sqrt x }} + C.\)