Giải bài 5.65 trang 209 SBT đại số và giải tích 11

Đề bài

Tìm đạo hàm của các hàm số sau:

\(y = x\sqrt {1 + {x^2}} .\)

Lời giải chi tiết

\(\begin{array}{l}
y' = \left( x \right)'\sqrt {1 + {x^2}} + x\left( {\sqrt {1 + {x^2}} } \right)'\\
= \sqrt {1 + {x^2}} + x.\dfrac{{\left( {1 + {x^2}} \right)'}}{{2\sqrt {1 + {x^2}} }}\\
= \sqrt {1 + {x^2}} + x.\dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}\\
= \sqrt {1 + {x^2}} + \dfrac{{{x^2}}}{{\sqrt {1 + {x^2}} }}\\
= \dfrac{{1 + {x^2} + {x^2}}}{{\sqrt {1 + {x^2}} }}\\
= \dfrac{{1 + 2{x^2}}}{{\sqrt {1 + {x^2}} }}
\end{array}\)