Giải bài 3.30 trang 131 SBT đại số và giải tích 11

Lựa chọn câu để xem lời giải nhanh hơn

Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết

LG a

\(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right.\)

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\)

Lời giải chi tiết:

Ta có hệ \(\left\{ \begin{array}{l}{u_1}{q^4} - {u_1} = 15\\{u_1}{q^3} - {u_1}q = 6\end{array} \right.\) hay \(\left\{ \begin{array}{l}{u_1}\left( {{q^4} - 1} \right) = 15\\{u_1}\left( {{q^3} - q} \right) = 6.\end{array} \right.{\rm{ }}\left( 1 \right)\)

Do (1) nên \(q \ne \pm 1,\) suy ra \(\dfrac{{15}}{6} = \dfrac{{{q^4} - 1}}{{q\left( {{q^2} - 1} \right)}} = \dfrac{{{q^2} + 1}}{q}.\)

Biến đổi về phương trình \(2{q^2} - 5q + 2 = 0.\)

Giải ra được \(q = 2\) và \(q = \dfrac{1}{2}.\)

Nếu \(q = 2\) thì \({u_1} = 1.\)

Nếu \(q = \dfrac{1}{2}\) thì \({u_1} = - 16.\)

LG b

\(\left\{ \begin{array}{l}{u_2} - {u_4} + {u_5} = 10\\{u_3} - {u_5} + {u_6} = 20\end{array} \right.\)

Phương pháp giải:

Sử dụng công thức tính số hạng tổng quát \({u_n} = {u_1}.{q^{n - 1}}\)

Lời giải chi tiết:

Ta có: \(\left\{ \begin{array}{l}{u_1}q - {u_1}{q^3} + {u_1}{q^4} = 10\\{u_1}{q^2} - {u_1}{q^4} + {u_1}{q^5} = 20\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_1}q - {u_1}{q^3} + {u_1}{q^4} = 10\\q\left( {{u_1}q - {u_1}{q^3} + {u_1}{q^4}} \right) = 20\end{array} \right.\)

Lấy pt dưới chia cho pt trên vế với vế ta được q=2.

\( \Rightarrow \left\{ \begin{array}{l}q = 2\\2{u_1} - 8{u_1} + 16{u_1} = 10\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 1\end{array} \right.\)

Vậy \({u_1} = 1,q = 2.\)