Giải bài 4 trang 231 SBT đại số và giải tích 11

  •   
Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số y = sin4x

LG a

Chứng minh rằng sin4(x + kπ/2) = sin4x với k Z.

Từ đó vẽ đồ thị của hàm số

y = sin4x; (C1)

y = sin4x + 1. (C2)

Lời giải chi tiết:

Ta có sin4(x + kπ/2) = sin(4x + k2π) = sin4x với k ∈ Z.

Từ đó suy ra hàm số y = sin4x là hàm số tuần hoàn với chu kì π/2.

Vẽ đồ thị hàm số y = sin4x.

Xét trên một chu kì T=[0;π2] ta có:

Đồ thị hàm số y = sin4x đi qua các điểm (0;0),(π8;1),(π4;0), (3π8;1),(π2;0)

Vì hàm số y = sin4x (C1) là hàm số lẻ nên đồ thị của nó có tâm đối xứng là gốc tọa độ O.

Ta có đồ thị như sau:

Đồ thị hàm số y = sin4x + 1 (C2) có được từ việ tịnh tiến đồ thị (C1) lên 1 đơn vị như sau:

LG b

Xác định giá trị của m để phương trình: sin4x + 1 = m (1)

- Có nghiệm

- Vô nghiệm

Lời giải chi tiết:

Cách 1:

Số nghiệm của phương trình sin4x+1=m bằng số giao điểm của đồ thị (C2) với đường thẳng y=m.

Quan sát đồ thị ta thấy,

Phương trình có nghiệm khi 0m2.

Phương trình vô nghiệm khi m>2 hoặc m<0.

Cách 2:

Vì sin4x + 1 = m ⇔ sin4x = m – 1

Mà -1 ≤ sin4x ≤ 1 nên -1 ≤ m – 1 ≤ 1

⇔ 0 ≤ m ≤ 2.

Từ đó, phương trình (1) có nghiệm khi 0 ≤ m ≤ 2 và vô nghiệm khi m > 2 hoặc m < 0.

LG c

Viết phương trình tiếp tuyến của (C2) tại điểm có hoành độ x0 = π/24.

Lời giải chi tiết:

Phương trình tiếp tuyến của (C2) có dạng

y - yo = y’(xo)(x - xo).