Đề bài
Gọi \(A',B',C'\) tương ứng là ảnh của ba điểm \(A,B,C\) qua phép đồng dạng tỉ số \(k\). Chứng minh rằng \(\overrightarrow {A'B'} .\overrightarrow {A'C'} = {k^2}\overrightarrow {AB.} \overrightarrow {AC} \).
Phương pháp giải - Xem chi tiết
Sử dụng định nghĩa phép đồng dạng tỉ số \(k\) biến \(M\) thành \(M'\) và \(N\) thành \(N'\) thì \(M'N' = kMN\).
Lời giải chi tiết
Theo định nghĩa của phép đồng dạng ta có \(B'C' = kBC\), từ đó suy ra \(B'C{'^2} = {k^2}B{C^2}\).
\( \Rightarrow {\left( {\overrightarrow {A'C'} - \overrightarrow {A'B'} } \right)^2} = {k^2}{\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)^2}\)
\( \Rightarrow A'C{'^2} - 2\overrightarrow {A'C'} .\overrightarrow {A'B'} + A'B{'^2}\)\( = {k^2}\left( {A{C^2} - 2\overrightarrow {AC} .\overrightarrow {AB} + A{B^2}} \right)\)
\(\begin{array}{l}
\Leftrightarrow A'C{'^2} - 2\overrightarrow {A'C'} .\overrightarrow {A'B'} + A'B{'^2}\\
= {k^2}A{C^2} - 2{k^2}\overrightarrow {AC} .\overrightarrow {AB} + {k^2}A{B^2}
\end{array}\)
Mà \(A'C{'^2} = {k^2}A{C^2},A'B{'^2} = {k^2}A{B^2}\) nên:
\(\begin{array}{l}
A'C{'^2} - 2\overrightarrow {A'C'} .\overrightarrow {A'B'} + A'B{'^2}\\
= A'C{'^2} - 2{k^2}\overrightarrow {AC} .\overrightarrow {AB} + A'B{'^2}\\
\Leftrightarrow - 2\overrightarrow {A'C'} .\overrightarrow {A'B'} = - 2{k^2}\overrightarrow {AC} .\overrightarrow {AB} \\
\Leftrightarrow \overrightarrow {A'C'} .\overrightarrow {A'B'} = {k^2}\overrightarrow {AC} .\overrightarrow {AB}
\end{array}\)
Vậy \(\overrightarrow {A'C'} .\overrightarrow {A'B'} = {k^2}\overrightarrow {AC} .\overrightarrow {AB} \) (đpcm).