Chứng minh các hệ thức sau:
LG a
Lời giải chi tiết:
sinα+sin(α+14π3)+sin(α−8π3)=sinα+sin(α+2π3+4π)+sin(α−2π3−2π)=sinα+sin(α+2π3)+sin(α−2π3)=sinα+2sinαcos2π3=sinα+2sinα.(−12)=sinα−sinα=0
LG b
Lời giải chi tiết:
VT=sin4α1+cos4α.cos2α1+cos2α=2sin2αcos2α2cos22α.cos2α2cos2α=sin2α2cos2α=2sinαcosα2cos2α=sinαcosα=tanαVP=cot(3π2−α)=cot(π+π2−α)=cot(π2−α)=tanα⇒VT=VP(dpcm)
LG c
Lời giải chi tiết:
VT=(cosa−cosb)2−(sina−sinb)2=(−2sina+b2sina−b2)2−(2cosa+b2sina−b2)2=4sin2a+b2sin2a−b2−4cos2a+b2sin2a−b2=4sin2a−b2(sin2a+b2−cos2a+b2)=−4sin2a−b2(cos2a+b2−sin2a+b2)=−4sin2a−b2.cos(a+b)=VP
LG d
Lời giải chi tiết:
VT=sin2(450+α)−sin2(300−α)−sin150.cos(150+2α)=[sin(450+α)−sin(300−α)]..[sin(450+α)+sin(300−α)]−sin150.cos(150+2α)=2cos7502sin150+2α2.2sin7502cos150+2α2−sin150.cos(150+2α)=(2sin7502cos7502).(2sin150+2α2cos150+2α2)−sin150.cos(150+2α)=sin750.sin(150+2α)−sin150.cos(150+2α)=cos150.sin(150+2α)−sin150.cos(150+2α)=sin(150+2α−150)=sin2α=VP